[1] Barbarino S, Bilgen O, Ajaj R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877.
[2] Sofla A Y N, Meguid S A, Tan K T, et al. Shape morphing of aircraft wing: status and challenges[J]. Materials Design, 2010, 31(3): 1284-1292.
[3] Joshi S P, Tidwell Z, Crossley W A, et al. Comparison of morphing wing strategies based upon aircraft performance impacts[C]//Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2004: 1722-1729.
[4] Ahmed S, Guo S. Optimal design and analysis of a wing with morphing high lift devices[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013: 1880-1895.
[5] Vasista S, Tong L, Wong K C. Realization of morphing wings: a multidisciplinary challenge[J]. Journal of Aircraft, 2012, 49(1): 11-28.
[6] Midha A, Norton T W, Howell L L. On the nomenclature, classification, and abstractions of compliant mechanisms[J]. Journal of Mechanical Design, 1994, 116(1): 270-279.
[7] De Gaspari A, Ricci S. A two-level approach for the optimal design of morphing wings based on compliant structures[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10): 1091-1111.
[8] Saggere L, Kota S. Static shape control of smart structures using compliant mechanisms[J]. AIAA Journal, 1999, 37(5): 572-578.
[9] Kota S, Hetrick J A, Osborn R, et al. Design and application of compliant mechanisms for morphing aircraft structures[C]//Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies. San Diego: Society of Photo-Optical Instrumentation Engineers, 2003: 24-33.
[10] Podugu P, Ananthasuresh G K. Topology optimization-based design of a compliant aircraft wing for morphing leading and trailing edges[C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver: American Society of Mechanical Engineer, 2010: 1099-1107.
[11] Liu S L, Ge W J, Li S J. Optimal design of compliant trailing edge for shape changing[J]. Chinese Journal of Aeronautics, 2008, 21(2): 187-192.
[12] Chen X, Ge W J, Zhang Y H. Investigation on synthesis optimization for shape morphing compliant mechanisms using GA[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1230-1235 (in Chinese). 陈秀, 葛文杰, 张永红. 基于遗传算法的柔性机构形状变化综合优化研究[J]. 航空学报, 2007, 28(5): 1230-1235.
[13] Huang J, Ge W J, Yang F. Topology optimization of the compliant mechanism for shape change of airfoil leading edge[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 988-992 (in Chinese). 黄杰, 葛文杰, 杨方. 实现机翼前缘形状连续变化柔性机构拓扑优化[J]. 航空学报, 2007, 28(4): 988-992.
[14] Tong X, Ge W, Sun C, et al. Topology optimization of compliant adaptive wing leading edge with composite materials[J]. Chinese Journal of Aeronautics, 2014, 27(6): 1488-1494.
[15] Bendsøe M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 4(1): 193-202.
[16] Sigmund O. A 99 line topology optimization code written in MATLAB[J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 120-127.
[17] Sigmund O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization, 2007, 33(4-5): 401-424.
[18] Sethian J A, Wiegmann A. Structural boundary design via level set and immersed interface methods[J]. Journal of Computational Physics, 2000, 163(2): 489-528.
[19] Jakiela M J, Chapman C, Duda J, et al. Continuum structural topology design with genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2): 339-356.
[20] Wang S Y, Tai K. Structural topology design optimization using genetic algorithms with a bit-array representation[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(36): 3749-3770.
[21] Wang S Y, Tai K. Graph representation for structural topology optimization using genetic algorithms[J]. Computers & Structures, 2004, 82(20): 1609-1622.
[22] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |