Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (2): 428806-428806.doi: 10.7527/S1000-6893.2023.28806
• Material Engineering and Mechanical Manufacturing • Previous Articles
Tianhe GAO, Kuo TIAN(), Lei HUANG, Shu ZHANG, Zengcong LI
Received:
2023-04-01
Revised:
2023-04-27
Accepted:
2023-05-29
Online:
2024-01-25
Published:
2023-07-11
Contact:
Kuo TIAN
E-mail:tiankuo@dlut.edu.cn
Supported by:
CLC Number:
Tianhe GAO, Kuo TIAN, Lei HUANG, Shu ZHANG, Zengcong LI. Data⁃driven shape⁃topology optimization method for curved shells[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 428806-428806.
Table 1
Comparison between results of simply supported beam from proposed method and other methods
设计点 | R2 | RRMSE | a/mm | b/mm | 质量/g | 应变能/mJ |
---|---|---|---|---|---|---|
设计上限 | 15 | 5 | 1.4 | 0.020 7 | ||
设计下限 | -15 | -5 | 1.4 | 0.056 6 | ||
初始设计(仅拓扑优化) | 0 | 0 | 1.4 | 0.024 9 | ||
形状⁃拓扑协同优化设计Ⅰ (15 代理模型样本+5 优化加点) | 0.956 5 | 0.201 5 | -7.838 6 | 1.610 1 | 1.4 | 0.019 9 |
形状-拓扑协同优化设计Ⅱ (19 代理模型样本+1 精细校核) | 0.995 0 | 0.068 7 | -5.891 5 | 1.610 1 | 1.4 | 0.020 7 |
形状-拓扑协同优化设计Ⅲ (无代理模型,20 CMA-ES迭代点) | 11.533 6 | 1.707 7 | 1.4 | 0.024 3 | ||
形状-拓扑协同优化设计Ⅳ (15 代理模型FF样本+5 优化加点) | 0.984 3 | 0.120 9 | -12.226 9 | 1.610 1 | 1.4 | 0.019 6 |
形状-拓扑协同优化设计Ⅴ (无代理模型,100 CMA-ES迭代点) | 5.634 1 | 1.796 8 | 1.4 | 0.021 7 |
Table 3
Comparison between results of cabin door from proposed method and other methods
设计点 | R2 | RRMSE | c/mm | n | 应变能/mJ |
---|---|---|---|---|---|
设计上限 | 100 | 3.000 0 | 15 040.0 | ||
设计下限 | 60 | 1.000 0 | 14 038.0 | ||
初始设计(仅拓扑优化) | 80 | 2.000 0 | 11 983.0 | ||
形状⁃拓扑协同优化设计I (30 代理模型样本+15 优化加点) | 0.931 0 | 0.674 3 | 100 | 1.465 4 | 7 437.4 |
形状-拓扑协同优化设计II (44 代理模型样本+1 精细校核) | 0.937 8 | 0.774 7 | 100 | 1.381 2 | 7 519.4 |
形状-拓扑协同优化设计III (无代理模型,45 CMA-ES迭代点) | 100 | 1.314 4 | 7 818.2 |
1 | 李增聪, 田阔, 赵海心. 面向多级加筋壳的高效变保真度代理模型[J]. 航空学报, 2020, 41(7): 623435. |
LI Z C, TIAN K, ZHAO H X. Efficient variable-fidelity models for hierarchical stiffened shells[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 623435 (in Chinese). | |
2 | TIAN K, LAI P, SUN Y, et al. Efficient buckling analysis and optimization method for rotationally periodic stiffened shells accelerated by Bloch wave method[J]. Engineering Structures, 2023, 276: 115395. |
3 | TIAN K, HUANG L, YANG M, et al. Concurrent numerical implementation of vibration correlation technique for fast buckling load prediction of cylindrical shells under combined loading conditions[J]. Engineering with Computers, 2022, 38(4): 3269-3281. |
4 | YUAN S. Fundamentals and processes of fluid pressure forming technology for complex thin-walled components[J]. Engineering, 2021, 7(3): 358-366. |
5 | 李玉海, 王成波, 陈亮, 等. 先进战斗机寿命设计与延寿技术发展综述[J]. 航空学报, 2021, 42(8): 525791. |
LI Y H, WANG C B, CHEN L, et al. Overview on development of advanced fighter life design and extension technology[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525791 (in Chinese). | |
6 | ZHU J H, ZHANG W H, XIA L. Topology optimization in aircraft and aerospace structures design[J]. Archives of Computational Methods in Engineering, 2016, 23(4): 595-622. |
7 | STEGMANN J, LUND E. Nonlinear topology optimization of layered shell structures[J]. Structural and Multidisciplinary Optimization, 2005, 29(5): 349-360. |
8 | PARK K S, YOUN S K. Topology optimization of shell structures using adaptive inner-front (AIF) level set method[J]. Structural and Multidisciplinary Optimization, 2008, 36(1): 43-58. |
9 | ZHANG W, ZHAO L, GAO T, et al. Topology optimization with closed B-splines and Boolean operations[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 652-670. |
10 | WANG B, ZHOU Y, TIAN K, et al. Novel implementation of extrusion constraint in topology optimization by Helmholtz-type anisotropic filter[J]. Structural and Multidisciplinary Optimization, 2020, 62(4): 2091-2100. |
11 | FENG S, ZHANG W, MENG L, et al. Stiffener layout optimization of shell structures with B-spline parameterization method[J]. Structural and Multidisciplinary Optimization, 2021, 63(6): 2637-2651. |
12 | WU Z, WANG S, XIAO R, et al. A local solution approach for level-set based structural topology optimization in isogeometric analysis[J]. Journal of Computational Design and Engineering, 2020, 7(4): 514-526. |
13 | 张卫红, 章胜冬, 高彤. 薄壁结构的加筋布局优化设计[J]. 航空学报, 2009, 30(11): 2126-2131. |
ZHANG W H, ZHANG S D, GAO T. Stiffener layout optimization of thin walled structures[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11): 2126-2131 (in Chinese). | |
14 | ZHOU Y, ZHU J, ZHAN H, et al. A bio-inspired B-spline offset feature for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 386: 114081. |
15 | DONG X, DING X, LI G, et al. Stiffener layout optimization of plate and shell structures for buckling problem by adaptive growth method[J]. Structural and Multidisciplinary Optimization, 2020, 61: 301-318. |
16 | HU T, DING X, ZHANG H, et al. Geometry and size optimization of stiffener layout for three-dimensional box structures with maximization of natural frequencies[J]. Chinese Journal of Aeronautics, 2023, 36(1): 324-341. |
17 | ANSOLA R, CANALES J, TARRAGO J A, et al. Combined shape and reinforcement layout optimization of shell structures[J]. Structural and Multidisciplinary Optimization, 2004, 27(4): 219-227. |
18 | NGUYEN T T, BRENTZEN J A, SIGMUND O, et al. Efficient hybrid topology and shape optimization combining implicit and explicit design representations[J]. Structural and Multidisciplinary Optimization, 2020, 62(3): 1061-1069. |
19 | CAI S, ZHANG W. An adaptive bubble method for structural shape and topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112778. |
20 | ANSOLA R, CANALES J, TARRAGO J A, et al. An integrated approach for shape and topology optimization of shell structures[J]. Computers & Structures, 2002, 80(5-6): 449-458. |
21 | SHIMODA M, NAKAYAMA H, SUZAKI S, et al. A unified simultaneous shape and topology optimization method for multi-material laminated shell structures[J]. Structural and Multidisciplinary Optimization, 2021, 64(6): 3569-3604. |
22 | 范俊, 尹泽勇, 王建军, 等. 轮盘概念设计中拓扑和形状同时优化方法[J]. 北京航空航天大学学报,2015,41(3):456-465. |
FAN J, YIN Z Y, WANG J J, et al. Simultaneous topology and shape optimization method in conceptual design of disk[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 456-465 (in Chinese). | |
23 | 张卫红, 杨军刚, 朱继宏. 压力载荷下的结构拓扑-形状协同优化[J]. 航空学报,2009, 30(12): 2335-2341. |
ZHANG W H, YANG J G, ZHU J H. Simultaneous topology and shape optimization of pressure load structures[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2335-2341 (in Chinese). | |
24 | DU X, HE P, MARTINS J R R A. Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling[J]. Aerospace Science and Technology, 2021, 113: 106701. |
25 | CHANDRASEKHAR A, SURESH K. TOuNN: topology optimization using neural networks[J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1135-1149. |
26 | TIAN K, LI H, HUANG L, et al. Data-driven modelling and optimization of stiffeners on undevelopable curved surfaces[J]. Structural and Multidisciplinary Optimization, 2020, 62(6): 3249-3269. |
27 | HUANG L, LI H, ZHENG K, et al. Shape optimization method for axisymmetric disks based on mesh deformation and smoothing approaches[J]. Mechanics of Advanced Materials and Structures, 2023,30(12): 2532-2555. |
28 | 李增聪, 陈燕, 李红庆, 等. 面向集中力扩散的回转曲面加筋拓扑优化方法[J]. 航空学报, 2021, 42(9): 224616. |
LI Z C, CHEN Y, LI H Q, et al. Topology optimization method for concentrated force diffusion on stiffened curved shell of revolution[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224616 (in Chinese). | |
29 | 张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报, 2021, 42(4): 524167. |
ZHANG Z C, GAO T Y, ZHANG L, et al. Aeroheating agent model based on radial basis function neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 524167 (in Chinese). | |
30 | LI Z, TIAN K, LI H, et al. A competitive variable-fidelity surrogate-assisted CMA-ES algorithm using data mining techniques[J]. Aerospace Science and Technology, 2021, 119: 107084. |
31 | LI Z, GAO T, TIAN K, et al. Elite-driven surrogate-assisted CMA-ES algorithm by improved lower confidence bound method[J]. Engineering with Computers, 2022: 1-21. |
32 | MENG D, LI Y, HE C, et al. Multidisciplinary design for structural integrity using a collaborative optimization method based on adaptive surrogate modelling[J]. Materials & Design, 2021, 206: 109789. |
33 | BRAIBANT V, FLEURY C. Shape optimal design using B-splines[J]. Computer Methods in Applied Mechanics and Engineering, 1984, 44(3): 247-267. |
34 | BENDSOE M P, SIGMUND O. Topology optimization: theory, methods, and applications[M]. 2003. |
35 | ZHOU M, FLEURY R, SHYY Y K, et al. Progress in topology optimization with manufacturing constraints[C]∥ 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. 2002: 5614. |
36 | MIKI M, HIROYASU T, KANEKO M, et al. A parallel genetic algorithm with distributed environment scheme[C]∥ IEEE International Conference on Systems. 1999: 695-700. |
37 | HELTON J C, DAVIS F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering & System Safety, 2003, 81(1): 23-69. |
38 | XU S, LIU H, WANG X, et al. A robust error-pursuing sequential sampling approach for global metamodeling based on Voronoi diagram and cross validation[J]. Journal of Mechanical Design, 2014, 136(7): 071009. |
39 | FUHG J N, FAU A, NACKENHORST U. State-of-the-art and comparative review of adaptive sampling methods for kriging[J]. Archives of Computational Methods in Engineering, 2021, 28: 2689-2747. |
40 | HUSSLAGE B G M, RENNEN G, VAN DAM E R, et al. Space-filling Latin hypercube designs for computer experiments[J]. Optimization and Engineering, 2011, 12(4): 611-630. |
41 | 文谦, 杨家伟, 武泽平, 等. 快速交叉验证改进的运载火箭近似建模方法[J]. 航空学报, 2022, 43(9): 225967. |
WEN Q, YANG J W, WU Z P, et al. An approximation modeling method of launch vehicles improved by fast cross-validation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 225967 (in Chinese). | |
42 | BAJER L, PITRA Z, REPICKÝ J, et al. Gaussian process surrogate models for the CMA evolution strategy[J]. Evolutionary Computation, 2019, 27(4): 665-697. |
43 | WANG Y J, HUANG J Q, ZHOU W X, et al. Neural network-based model predictive control with fuzzy-SQP optimization for direct thrust control of turbofan engine[J]. Chinese Journal of Aeronautics, 2022, 35(12): 59-71. |
44 | 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 623344. |
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 (in Chinese). | |
45 | HAN Z H. SurroOpt: a generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]∥Proceedings of ICAS 2016. 2016: 2016-0281. |
46 | FANG K, ZHOU Y C, MA P. An adaptive sequential experiment design method for model validation[J]. Chinese Journal of Aeronautics, 2020, 33(6): 1661-1672. |
47 | JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23: 1-13. |
48 | RAKIĆ T, KASAGIĆ-VUJANOVIĆ I, JOVANOVIĆ M, et al. Comparison of full factorial design, central composite design, and box-behnken design in chromatographic method development for the determination of fluconazole and its impurities[J]. Analytical Letters, 2014, 47(8): 1334-1347. |
[1] | Qian YANG, Yanzhe WANG, Di YANG, Zezhong LI, Weiwei QU. Prediction and planning of automatic laying speed for fiber reinforced composite materials based on data⁃driven model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 429313-429313. |
[2] | Feng JIANG, Huacong LI, Jiangfeng FU, Linxiong HONG. A RBF and active learning combined method for structural non-probabilistic reliability analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 226667-226667. |
[3] | Haolin YIN, Neng WAN, Xiaogang SHEN, Dao WANG, Hu QIAO. Allowance optimization method of hollow blade machining under coupling constraint of wall thickness and profile [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 428191-428191. |
[4] | Shaobo YAO, Lijian JIANG, Wenwen ZHAO, Zheng LU, Changju WU, Weifang CHEN. Numerical method of data-driven rarefied nonlinear constitutive relations coupled with clustering [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 40-53. |
[5] | CHEN Bo, YUE Kai, WANG Rusheng, HU Mingnan. Learning-based multi-rate multi-sensor fusion localization method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 726904-726904. |
[6] | WEN Qian, YANG Jiawei, WU Zeping, YANG Xixiang, ZHAO Hailong, WANG Zhixiang. An approximation modeling method of launch vehicles improved by fast cross-validation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 225967-225967. |
[7] | ZHAO Fei, LIU Liling, SHI Yong, ZUO Guang, WAN Qian, ZHANG Yujia. Hypersonic separation simulation of aerocraft similar to X-43A [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 125171-125171. |
[8] | WANG Shaoping, GENG Yixuan, SHI Cun. Life estimation of aircraft hydraulic pump based on failure physics and data driven [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527347-527347. |
[9] | LI Zengcong, CHEN Yan, LI Hongqing, TIAN Kuo, WANG Gang, GAO Feng, WANG Bo. Topology optimization method for concentrated force diffusion on stiffened curved shell of revolution [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 224616-224616. |
[10] | LIU Zhikan, LIU Shenshen, LIU Xiao, ZENG Lei, DAI Guangyue. RBF data transfer based on physical gradient modification [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 124506-124506. |
[11] | SUN Yan, JIANG Meng, MENG Dehong, PANG Yufei. Formation mechanism and elimination algorithm of warping in interactive prismatic grid generation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 124443-124443. |
[12] | ZHANG Zhichao, GAO Taiyuan, ZHANG Lei, TUO Shuangfen. Aeroheating agent model based on radial basis function neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524167-524167. |
[13] | YAN Chongyang, ZHANG Yufei, CHEN Haixin. Application of field inversion based on discrete adjoint method in turbulence modeling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524695-524695. |
[14] | CHEN Zhijie, TANG Jinhui, WANG Chong, CHENG Jizeng, CAO Shan, SHAO Xin. Using artificial intelligence in airspace system to improve airspace hierarchical governance capability [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 525018-525018. |
[15] | MENG Songhe, YE Yumei, YANG Qiang, HUANG Zhen, XIE Weihua. Digital twin and its aerospace applications [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 23615-023615. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341