[1] Borrego L P, Ferreira J M, Pinho da Cruz J M, et al. Evaluation of overload effects on fatigue crack growth and closure[J]. Engineering Fracture Mechanics, 2003, 70(11): 1379-1397.
[2] Xu H. Probability fatigue[M]. Shenyang: Northeastern University Press, 1994: 382-443. (in Chinese). 徐灏. 概率疲劳[M]. 沈阳: 东北大学出版社, 1994: 382-443.
[3] Tunna J M. Random load fatigue: theory and experiment[J]. Journal of Mechanical Engineering Science, 1985, 199(3): 249-257.
[4] Leybold H A, Naumann E C. A study of fatigue life under random loading[C]//Proceedings of American Society for Testing Materials, 1963: 717.
[5] Miner M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): 159-164.
[6] Von Euw E F J, Hertzberg R W, Roberts R. Delay effects in fatigue crack propagation[J]. ASTM STP, 1972, 513: 230-259.
[7] Jones R E. Fatigue crack growth retardation after single-cycle peak overload in Ti-6Al-4V titanium alloy[J]. Engineering Fracture Mechanics, 1973, 5(3): 585-604.
[8] Matsuoka S, Tanaka K. Delayed retardation phenomena of fatigue crack growth in various steels and alloys[J]. Journal of Materials Science, 1978, 13(6): 1335-1353.
[9] Wheeler O E. Spectrum loading and crack growth[J]. Journal of Fluids Engineering, 1972, 94(1): 181-186.
[10] Miles J W. On structural fatigue under random loading[J]. Journal of the Aeronautical Sciences, 1954, 21(11): 753-762.
[11] Arone R. Fatigue crack growth under stationary random load[J]. Engineering Fracture Mechanics, 1991, 39(5): 895-903.
[12] Sankararaman S, Ling Y, Mahadevan S. Uncertainty quantification and model validation of fatigue crack growth prediction[J]. Engineering Fracture Mechanics, 2011, 78(7): 1487-1504.
[13] Zárate B A, Caicedo J M, Yu J, et al. Bayesian model updating and prognosis of fatigue crack growth[J]. Engineering Structures, 2012, 45: 53-61.
[14] Yuan S F, Zhang H, Qiu L, et al. A fatigue crack growth prediction method based on particle filter[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1114-1121. (in Chinese). 袁慎芳, 张华, 邱雷, 等. 基于粒子滤波算法的疲劳裂纹扩展预测方法[J]. 航空学报, 2013, 34(5): 1114-1121.
[15] Xie L Y. Basic theory and method of mechanical reliability[M]. 2nd ed. Beijing: Science Press, 2012: 120-129. (in Chinese). 谢里阳. 机械可靠性基本理论与方法[M]. 2nd ed. 北京: 科学出版社, 2012: 120-129.
[16] ASTM E647. Standard test method for fatigue crack growth rates of metallic materials[S]. Philadelphia: ASTM, 1995: 1-49.
[17] China National Standards Committee. GB/T 6398—2000 Standard test method for fatigue crack growth rates of metallic materials[S]. Beijing: China National Standards Committee, 2000. (in Chinese). 中国国家标准委员会. GB/T 6398—2000金属材料疲劳裂纹扩展速率试验方法[S]. 北京:中国国家标准委员会, 2000.
[18] Nestor P. fracture mechanics[M]. Netherlands: Kluwer Academic Publishers, 2004: 39-72.
[19] Wang Z T. Aluminum alloy and its processing handbook[M]. 3rd ed. Changsha: Center South University Press, 2004: 1370-1380. (in Chinese). 王祝堂. 铝合金及其加工手册[M]. 3rd ed. 长沙: 中南大学出版社, 2004: 1370-1380.
[20] Hudson C M, Scardina J T. Effect of stress ratio on fatigue-crack growth in 7075-T6 aluminum-alloy sheet[J]. Engineering Fracture Mechanics, 1969, 1(3): 429-446. |