[1] REED R C. The superalloys: Fundamentals and applications[M]. Cambridge: Cambridge University Press, 2006: 6-8. [2] ZHAO J C. Ultrahigh-temperature materials for jet engines[J]. MRS Bulletin, 2003, 28(9): 622-630. [3] ZHANG M. Research on aero-engine maintenance decision and overhaul cost estimation[D]. Tianjin: Civil Aviation University of China, 2020: 13-14 (in Chinese). 张猛. 民航发动机大修决策和大修成本估算[D]. 天津: 中国民航大学, 2020: 13-14. [4] ZHANG S Q, YANG Z X, JIANG R S, et al. Effect of creep feed grinding on surface integrity and fatigue life of Ni3Al based superalloy IC10[J]. Chinese Journal of Aeronautics, 2021, 34(1): 438-448. [5] HUANG W Q, YANG X G, LI S L. Evaluation of service-induced microstructural damage for directionally solidified turbine blade of aircraft engine[J]. Rare Metals, 2019, 38(2): 157-164. [6] TONG J Y, DING X F, WANG M L, et al. Assessment of service induced degradation of microstructure and properties in turbine blades made of GH4037 alloy[J]. Journal of Alloys and Compounds, 2016, 657: 777-786. [7] HU X A, SHI D Q, YANG X G, et al. TMF constitutive and life modeling: from smooth specimen to turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 422494 (in Chinses). 胡晓安, 石多奇, 杨晓光, 等. TMF本构和寿命模型: 从光棒到涡轮叶片[J]. 航空学报, 2019, 40(3): 422494. [8] NAZMY M, EPISHIN A, LINK T, et al. A review of degradation in single crystal nickel based superalloys[J]. Energy Materials, 2006, 1(4): 263-268. [9] YANG X X, CUI X, YUAN H. Correlations between microstructure evolution and mechanical behavior of a nickel-based single crystal superalloy with long-term aging effects[J]. Materials Characterization, 2020, 169: 110652. [10] FANG C. Research on uneconomical repair of V2500-A5 engine[J]. Science & Technology Vision, 2018(31): 46-47, 124 (in Chinese). 方翀. 关于V2500-A5发动机不经济修理的研究[J]. 科技视界, 2018(31): 46-47, 124. [11] EPISHIN A, LINK T, BRVCKNER U, et al. Kinetics of the topological inversion of the γ/γ'-microstructure during creep of a nickel-based superalloy[J]. Acta Materialia, 2001, 49(19): 4017-4023. [12] FEDELICH B, EPISHIN A, LINK T, et al. Rafting during high temperature deformation in a single crystal superalloy: Experiments and modeling[M]. 2012: 491-500. [13] XIA P C, YU J J, SUN X F, et al. Influence of thermal exposure on γ' precipitation and tensile properties of DZ951 alloy[J]. Materials Characterization, 2007, 58(7): 645-651. [14] CORMIER J, CAILLETAUD G. Constitutive modeling of the creep behavior of single crystal superalloys under non-isothermal conditions inducing phase transformations[J]. Materials Science and Engineering: A, 2010, 527(23): 6300-6312. [15] KIRKA M M, BRINDLEY K A, NEU R W, et al. Influence of coarsened and rafted microstructures on the thermomechanical fatigue of a Ni-base superalloy[J]. International Journal of Fatigue, 2015, 81: 191-201. [16] GABB T P. Detailed microstructural characterization of the disk alloy ME3[R]. NASA Glenn Research Center Cleveland, 2004: 12-13. [17] FULLWOOD D T, NIEZGODA S R, ADAMS B L, et al. Microstructure sensitive design for performance optimization[J]. Progress in Materials Science, 2010, 55(6): 477-562. [18] CACCURI V, DESMORAT R, CORMIER J. Tensorial nature of γ'-rafting evolution in nickel-based single crystal superalloys[J]. Acta Materialia, 2018, 158: 138-154. [19] YABANSU Y C, ISKAKOV A, KAPUSTINA A, et al. Application of Gaussian process regression models for capturing the evolution of microstructure statistics in aging of nickel-based superalloys[J]. Acta Materialia, 2019, 178: 45-58. [20] GORGANNEJAD S, ESTRADA RODAS E A, NEU R W. Ageing kinetics of Ni-base superalloys[J]. Materials at High Temperatures, 2016, 33(4-5): 291-300. [21] WOOD M I. Gas turbine hot section components: The challenge of 'residual life' assessment[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2000, 214(3): 193-201. [22] FEDELICH B, KVNECKE G, EPISHIN A, et al. Constitutive modelling of creep degradation due to rafting in single-crystalline Ni-base superalloys[J]. Materials Science and Engineering: A, 2009, 510-511: 273-277. [23] FENG Q, TONG J Y, ZHENG Y R, et al. Service induced degradation and rejuvenation of gas turbine blades[J]. Materials China, 2012, 31(12): 21-34 (in Chinses). 冯强, 童锦艳, 郑运荣, 等. 燃气涡轮叶片的服役损伤与修复[J]. 中国材料进展, 2012, 31(12): 21-34. [24] SHARGHI-MOSHTAGHIN R, ASGARI S. The influence of thermal exposure on the γ' precipitates characteristics and tensile behavior of superalloy IN-738LC[J]. Journal of Materials Processing Technology, 2004, 147(3): 343-350. [25] OTT M, MUGHRABI H. Dependence of the high-temperature low-cycle fatigue behaviour of the monocrystalline nickel-base superalloys CMSX-4 and CMSX-6 on the γ/γ'-morphology[J]. Materials Science and Engineering: A, 1999, 272(1): 24-30. [26] KALIDINDI S. Hierarchical materials informatics: Novel analytics for materials data[M]. 2015: 1-32. [27] CECEN A, FAST T, KALIDINDI S R. Versatile algorithms for the computation of 2-point spatial correlations in quantifying material structure[J]. Integrating Materials & Manufacturing Innovation, 2016, 5(1): 1-15. [28] FULLWOOD D T, NIEZGODA S R, ADAMS B L, et al. Microstructure sensitive design for performance optimization[J]. Progress in Materials Science, 2010, 55(6): 477-562. [29] FAN Y S, YANG X G, SHI D Q, et al. A quantitative role of rafting on low cycle fatigue behaviour of a directionally solidified Ni-based superalloy through a cross-correlated image processing method[J]. International Journal of Fatigue, 2020, 131: 105305. [30] FAN Y S, YANG X G, TAN L, et al. Quantitative characterization of rafting state and life degradation of superalloys for turbine blades[C]//The 20th Symposium on Engine Structural Strength and Vibration, 2020: 1-8 (in Chinese). 范永升, 杨晓光, 谭龙, 等. 涡轮叶片合金筏化量化表征及寿命退化研究[C]//中国航空学会动力分会第二十届发动机结构强度与振动学术交流会, 2020: 1-8 [31] FAN Y S, HUANG W Q, YANG X G, et al. Mechanical properties deterioration and its relationship with microstructural variation using small coupons sampled from serviced turbine blades[J]. Materials Science and Engineering: A, 2019, 757: 134-145. [32] FAN Y S, HUANG W Q, YANG X G, et al. Microstructural damage analysis of service turbine blades for an aero-engine[J]. Journal of Mechanical Engineering, 2019, 55(13): 122-128 (in Chinese). 范永升, 黄渭清, 杨晓光, 等. 某型航空发动机涡轮叶片服役微观损伤研究[J]. 机械工程学报, 2019, 55(13): 122-128. [33] FAN Y S, HUANG W Q, YANG X G, et al. The role of coarsening on LCF behaviour using small coupons of a DS Ni-based superalloy[J]. International Journal of Fatigue, 2019, 125: 418-431. [34] DONG C L. Constitutive theory of directionally solidified superalloys and life prediction of its brazed joints[D]. Beijing: Beihang University, 2013: 115-116 (in Chinses). 董成利. 定向凝固高温合金本构理论及钎焊接头寿命预测[D]. 北京: 北京航空航天大学, 2013: 115-116. |