Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (24): 28595-028595.doi: 10.7527/S1000-6893.2023.28595
• Reviews • Previous Articles Next Articles
Xiangfan NIE1(), Yang LI1, Yazhou WANG1, Quanhong WAN2, Weifeng HE1
Received:
2023-02-21
Revised:
2023-03-24
Accepted:
2023-05-06
Online:
2023-12-25
Published:
2023-05-12
Contact:
Xiangfan NIE
E-mail:niexiangfan_kgd@126.com
Supported by:
CLC Number:
Xiangfan NIE, Yang LI, Yazhou WANG, Quanhong WAN, Weifeng HE. Research progress and prospect of laser shock peening technology in aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 28595-028595.
Table 1
Influence law of laser shock peening on aircraft material/structure
结构 | 材料 | 功率密度/ (GW·cm-2) | 次数 | 搭接率 | 表面残余应力/MPa | 影响 深度/mm | 疲劳性能 | 文献 |
---|---|---|---|---|---|---|---|---|
含孔结构 | 7050-T7451 | 1.41 | 2 | 50% | 应力比R=0.1,应力水平为195 MPa,疲劳寿命增幅为38.92% | [ | ||
6.01 | 应力比R=0.1,应力水平为195 MPa,疲劳寿命增幅为-32.17% | |||||||
7050-T7451 | 3.77 | 2 | 50% | -441 | 1.55 | 应力比R=0.1,当应力水平为165.8、195.0、275.4 MPa时,疲劳寿命分别提高了4.51倍、2.16倍、1.16倍 | [ | |
AA2024-T3 | 4 | 1 | 50% | 应力比R=0.1,应力水平为110 MPa,疲劳寿命提高了2.1倍 | [ | |||
Ti-17 | 10.61 | 3 | 50% | -304 | ~0.5 | 应力比R=0.1,应力水平为450 MPa,疲劳寿命提高了330% | [ | |
TC4-DT | 10.55 | 2 | 63% | ~-420 | ~0.9 | 应力比R=0.1,当应力水平为300、350、400 MPa时,疲劳寿命分别提高了750.3%、277.2%、108.2% | [ | |
焊接结构 | 7050-T7451 | 13.26 | 1 | 50% | 应力比R=0.1,当应力水平为200、250、300 MPa时,疲劳寿命分别提高了30%、27%、5% | [ | ||
AA6056-T6 | 25(方形光斑) | 1 | 0% | ~-250 | ~2 | 应力比R=0.1,疲劳循环次数为107,疲劳极限提高了43% | [ | |
TC4 | 13.26 | 1 | 40% | -564.37 | 应力比R=0.1,应力水平为520 MPa,疲劳寿命增幅为2.77~8.15倍 | [ | ||
含倒角结构 | 7050-T7451 | 4(方形光斑) | 3 | -339 | 2.44 | 应力比R=0.1,应力水平为415 MPa,疲劳寿命提高了2.3倍 应力比R=0.1,疲劳循环次数为106,疲劳极限提高了41% | [ | |
6061-T6 | 4 | 1 | 70% | -9 | >1.8 | [ | ||
6 | -13 | >1.8 | ||||||
2060-T8 | 1.06 | 1 | 50% | -450 | 1 | [ | ||
2024-T351 | 5.31 | 2 | 50% | ~-320 | ~1.3 | 应力比R=0.1,疲劳载荷最大值为4.5 kN,疲劳裂纹扩展寿命提高了2.54倍 | [ | |
高承载结构 | Hy-Tuf钢 | 10(方形光斑) | 3 | 3% | ~-800 | 谱载条件下,疲劳寿命提高了271% | [ |
Table 2
Characteristic and application key technology of typical composite process
复合工艺 | 主要应用对象 | 特点 | 关键技术 |
---|---|---|---|
开缝/压合衬套+LSP | 孔 | 开缝/压合衬套对孔内壁进行强化,激光冲击强化对孔端面进行强化,在孔周形成全方位强化效应 | 工艺实施顺序,控制变形的技术 |
喷丸+LSP | 隔框、壁板等部件 | 强化区域面积大,硬化程度高,强化层更深,表面残余压应力更大 | 工艺实施顺序,疲劳关键区域的确定,塑性变形协同控制 |
滚压+LSP | 轴类或套筒类部件 | 表面质量更好,硬化程度高,表面残余压应力更大,表层晶粒尺寸更加细化 | 工艺实施顺序,滚压工艺参数的选择,滚压残余应力场的控制 |
超声冲击+LSP | 焊接部件 | 晶粒细化程度高,表面残余压应力更大 | 工艺实施顺序,强韧性协同控制 |
1 | 李应红,何卫峰. 激光冲击强化理论与技术[M]. 北京: 科学出版社, 2013. |
LI Y H, HE W F. Laser shock peening theory and technology[M]. Beijing: Science Press, 2013 (in Chinese). | |
2 | 彭兆春. 基于疲劳损伤累积理论的结构寿命预测与时变可靠性分析方法研究[D]. 成都: 电子科技大学, 2017. |
PENG Z C. Research on methods for structural life prediction and time-dependent reliability analysis using cumulative fatigue damage theories[D]. Chengdu: University of Electronic Science and Technology of China, 2017 (in Chinese). | |
3 | YANG S, ZENG W, YANG J S. Characterization of shot peening properties and modelling on the fatigue performance of 304 austenitic stainless steel[J]. International Journal of Fatigue, 2020, 137: 105621. |
4 | MARTINS A M, LEAL C A A, CAMPIDELLI A F V, et al. Assessment of the temperature distribution in deep rolling of hardened AISI 4140 steel[J]. Journal of Manufacturing Processes, 2022, 73: 686-694. |
5 | PANIN A V, KAZACHENOK M S, DMITRIEV A I, et al. The effect of ultrasonic impact treatment on deformation and fracture of electron beam additive manufactured Ti-6Al-4V under uniaxial tension[J]. Materials Science and Engineering: A, 2022, 832: 142458. |
6 | YUAN X L, LI C Y. An engineering high cycle fatigue strength prediction model for low plasticity burnished samples[J]. International Journal of Fatigue, 2017, 103: 318-326. |
7 | SUN R J, LI L H, GUO W, et al. Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy[J]. Materials Science and Engineering: A, 2018, 737: 94-104. |
8 | HATAMLEH O, LYONS J, FORMAN R. Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints[J]. International Journal of Fatigue, 2007, 29(3): 421-434. |
9 | RUSCHAU J J, JOHN R, THOMPSON S R, et al. Fatigue crack nucleation and growth rate behavior of laser shock peened titanium[J]. International Journal of Fatigue, 1999, 21: 199-209. |
10 | PEYRE P, FABBRO R, MERRIEN P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Materials Science and Engineering: A, 1996, 210(1-2): 102-113. |
11 | CLAUER A H, LAHRMAN D F. Laser shock processing as a surface enhancement process[J]. Key Engineering Materials, 2001, 197: 121-144. |
12 | RUBIO-GONZÁLEZ C, OCAÑA J L, GOMEZ-ROSAS G, et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy[J]. Materials Science and Engineering: A, 2004, 386(1-2): 291-295. |
13 | FAIRAND B P, WILCOX B A, GALLAGHER W J, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 1972, 43(9): 3893-3895. |
14 | BECKER R. Effects of crystal plasticity on materials loaded at high pressures and strain rates[J]. International Journal of Plasticity, 2004, 20(11): 1983-2006. |
15 | FAN Y, WANG Y, VUKELIC S, et al. Wave-solid interactions in laser-shock-induced deformation processes[J]. Journal of Applied Physics, 2005, 98(10): 104904. |
16 | LOOMIS E, PERALTA P, SWIFT D, et al. Cross-sectional TEM studies of plastic wave attenuation in shock loaded NiAl[J]. Materials Science and Engineering: A, 2006, 437(2): 212-221. |
17 | HATAMLEH O. A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints[J]. International Journal of Fatigue, 2009, 31(5): 974-988. |
18 | YE C, SUSLOV S, KIM B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 2011, 59(3): 1014-1025. |
19 | BROCKMAN R A, BRAISTED W R, OLSON S E, et al. Prediction and characterization of residual stresses from laser shock peening[J]. International Journal of Fatigue, 2012, 36(1): 96-108. |
20 | FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784. |
21 | CELLARD C, RETRAINT D, FRANÇOIS M, et al. Laser shock peening of Ti-17 titanium alloy: influence of process parameters[J]. Materials Science and Engineering: A, 2012, 532: 362-372. |
22 | SANO Y, OBATA M, KUBO T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering: A, 2006, 417(1-2): 334-340. |
23 | 葛茂忠, 项建云, 张永康. 激光冲击处理对AZ31B镁合金力学性能的影响[J]. 材料工程, 2013, 41(9): 54-59. |
GE M Z, XIANG J Y, ZHANG Y K. Effect of laser shock processing on mechanical properties of AZ31B magnesium alloy[J]. Journal of Materials Engineering, 2013, 41(9): 54-59 (in Chinese). | |
24 | WANG X D, LI Y H, LI Q P, et al. Property and thermostablity study on TC6 titanium alloy nanostructure processed by LSP[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(1): 68-76. |
25 | LU J Z, LUO K Y, ZHANG Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16): 5354-5362. |
26 | LU J Z, LUO K Y, ZHANG Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994. |
27 | 张永康, 周立春, 任旭东, 等. 激光冲击TC4残余应力场的试验及有限元分析[J]. 江苏大学学报(自然科学版), 2009, 30(1): 10-13, 18. |
ZHANG Y K, ZHOU L C, REN X D, et al. Experiment and finite element analysis on residual stress field in laser shock processing TC4 titanium alloy[J]. Journal of Jiangsu University (Natural Science Edition), 2009, 30(1): 10-13, 18 (in Chinese). | |
28 | 张宏,唐亚新,余承业,等. 激光冲击处理对2024铝合金疲劳性能的影响[J]. 金属热处理学报, 1999, 20(2): 59-64. |
ZHANG H, TANG Y X, YU C Y, et al. The effects of laser shock processing on the fatigue properties of 2024 aluminum alloy[J]. Transactions of Metal Heat Treatment, 1999, 20(2): 59-64 (in Chinese). | |
29 | 廖培育, 王声波, 盛晶晶, 等. 实验研究脉冲强激光在钛合金靶中诱导的冲击波[J]. 应用激光, 2007, 27(2): 110-112. |
LIAO P Y, WANG S B, SHENG J J, et al. Experimental study of high-power pulsed laser induced shock waves in Ti alloy target[J]. Applied Laser, 2007, 27(2): 110-112 (in Chinese). | |
30 | ALTENBERGER I, STACH E A, LIU G, et al. An in situ transmission electron microscope study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening[J]. Scripta Materialia, 2003, 48(12): 1593-1598. |
31 | LIN B, LUPTON C, SPANRAD S, et al. Fatigue crack growth in laser-shock-peened Ti-6Al-4V aerofoil specimens due to foreign object damage[J]. International Journal of Fatigue, 2014, 59: 23-33. |
32 | GANESH P, SUNDAR R, KUMAR H, et al. Studies on laser peening of spring steel for automotive applications[J]. Optics and Lasers in Engineering, 2012, 50(5): 678-686. |
33 | DANE C B, HARRIS F, LAO E, et al. Advanced beam delivery for mobile laser peening[C]∥Proceedings of the 2nd International Conference on Laser Peening. San Francisco: Metal Improvement Company, 2010. |
34 | JENSEN D. Adaptation of LSP capability for use on F-22 raptor primary structure at an aircraft modification depot[C]∥Proceedings of the 2nd International Conference on Laser Peening. San Francisco: Metal Improve-ment Company, 2010. |
35 | LEAP M J, RANKIN J, HARRISON J, et al. Effects of laser peening on fatigue life in an arrestment hook shank application for naval aircraft[J]. International Journal of Fatigue, 2011, 33(6): 788-799. |
36 | RANKIN J, RACANELLI T, CAMPBELL J, et al. Laser peening for enhanced fatigue lifetime of navy aircraft[C]∥Proceedings of the 2013 Aircraft Structural Integrity Program Conference, 2013. |
37 | CARLSON S. Laser shock peening (LSP) on F-35 critical bulkheads[C]∥Proceedings of the 2018 Aircraft Structural Integrity Program Conference, 2018. |
38 | CARUSO P. Structural certification of laser peening for F-35 safety critical bulkheads[C]∥Proceedings of the 2017 Aircraft Structural Integrity Program Conference, 2017. |
39 | CARLSON S. Qualification and Implementation of laser shock peening on F-35 & lessons learned[C]∥Proceedings of the 2020 Aircraft Structural Integrity Program Conference, 2020. |
40 | 邹世坤. 激光冲击强化技术[M]. 北京: 国防工业出版社, 2021. |
ZOU S K. Laser shock peening technology[M]. Beijing: National Defense Industry Press, 2021 (in Chinese). | |
41 | 李鑫. 小孔结构激光冲击与超声复合强化及抗疲劳研究[D]. 镇江: 江苏大学, 2019. |
LI X. Study on laser shock and ultrasonic composite strengthening and anti-fatigue of small hole structures[D]. Zhenjiang: Jiangsu University, 2019 (in Chinese). | |
42 | 李旭. 厚板小孔构件激光冲击及复合强化研究[D]. 镇江: 江苏大学, 2018. |
LI X. Research on laser shock processing and composite strengthening of thick plate with small holes[D]. Zhenjiang: Jiangsu University, 2018 (in Chinese). | |
43 | 李龙. 小孔构件激光冲击强化研究及其特性分析[D]. 马鞍山: 安徽工业大学, 2016. |
LI L. The research on laser shock peening and characteristic analysis of small hole components[D]. Maanshan: Anhui University of Technology, 2016 (in Chinese). | |
44 | 蒋尧. 激光冲击能量对铝合金小孔件应力分布及疲劳寿命影响的研究[D]. 镇江: 江苏大学, 2016. |
JIANG Y. Research of the effect of stress distribution and fatigue life on aluminum alloy with fastener hole subjected to laser shock energy[D]. Zhenjiang: Jiangsu University, 2016 (in Chinese). | |
45 | 李振. 基于激光冲击的钛合金小孔构件残余应力分布及疲劳性能研究[D]. 镇江: 江苏大学, 2016. |
LI Z. Investigation of residual stress and fatigue performance of titanium alloy part with hole by laser shock processing[D]. Zhenjiang: Jiangsu University, 2016 (in Chinese). | |
46 | 王珉. 抗疲劳制造原理与技术[M]. 南京: 江苏科学技术出版社, 1999. |
WANG M. Principle and technology of anti-fatigue manufacture[M]. Nanjing: Phoenix Science Press, 1999 (in Chinese). | |
47 | 姜银方,程志军,丁报,等. 单面激光冲击孔壁残余应力与疲劳失效[J]. 激光与红外, 2014, 44(10): 1090-1094. |
JIANG Y F, CHENG Z J, DING B, et al. Residual stress and fatigue failure in hole specimen by one side laser shock processing[J]. Laser & Infrared, 2014, 44(10): 1090-1094 (in Chinese). | |
48 | 罗懋钟,曹子文,代军义,等. 典型孔结构激光冲击强化残余应力场特征及有限元分析[J]. 航空制造技术, 2020, 63(17): 47-53. |
LUO M Z, CAO Z W, DAI J Y, et al. Stress field characteristics and finite element analysis of typical pore structures caused by laser shock peening[J]. Aeronautical Manufacturing Technology, 2020, 63(17): 47-53 (in Chinese). | |
49 | 帅仕祥,吴俊峰,车志刚,等. 激光冲击强化Al7050-T7451合金紧固孔的残余应力研究[J]. 航空制造技术, 2022, 65(9): 103-109. |
SHUAI S X, WU J F, CHE Z G, et al. Residual stresses of Al7050-T7451 alloy fastener holes with laser shock peening[J]. Aeronautical Manufacturing Technology, 2022, 65(9): 103-109 (in Chinese). | |
50 | 韩培培,焦清洋,权纯逸,等. 激光冲击强化对7050铝合金小孔结构残余应力和疲劳性能的影响[J]. 金属热处理, 2021, 46(11): 202-206. |
HAN P P, JIAO Q Y, QUAN C Y, et al. Effect of laser shock peening on residual stress and fatigue property of 7050 aluminium alloy with hole[J]. Heat Treatment of Metals, 2021, 46(11): 202-206 (in Chinese). | |
51 | ZHANG X Q, CHEN L S, YU X L, et al. Effect of laser shock processing on fatigue life of fastener hole[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 969-974. |
52 | JIANG Y F, JI B, GAN X D, et al. Study on the effect of laser peening with different power densities on fatigue life of fastener hole[J]. Optics & Laser Technology, 2018, 106: 311-320. |
53 | SUN R J, LI L H, ZHU Y, et al. Fatigue of Ti-17 titanium alloy with hole drilled prior and post to laser shock peening[J]. Optics & Laser Technology, 2019, 115: 166-170. |
54 | 姜银方,冯文龙,彭涛涛,等. 应力水平下的激光冲击小孔构件疲劳扩展研究[J]. 激光与红外, 2017, 47(10): 1205-1209. |
JIANG Y F, FENG W L, PENG T T, et al. Research on fatigue growth of laser peening hole specimen under stress level[J]. Laser & Infrared, 2017, 47(10): 1205-1209 (in Chinese). | |
55 | 赵勇, 姜银方, 彭涛涛, 等. 激光冲击强化铝合金小孔构件的疲劳寿命研究[J]. 航空制造技术, 2017, 60(13): 38-43. |
ZHAO Y, JIANG Y F, PENG T T, et al. Research on fatigue life of aluminum alloy with fastener hole by laser shock processing[J]. Aeronautical Manufacturing Technology, 2017, 60(13): 38-43 (in Chinese). | |
56 | 蒋尧, 姜银方, 李振, 等. 铝合金小孔件单双面激光冲击强化效果研究[J]. 激光技术, 2016, 40(1): 90-93. |
JIANG Y, JIANG Y F, LI Z, et al. Investigation of effect of one-side and two-side laser shock processing on aluminum alloy small-hole specimens[J]. Laser Technology, 2016, 40(1): 90-93 (in Chinese). | |
57 | 姜银方, 李娟, 潘禹, 等. 双面激光冲击次序对小孔件强化效果影响研究[J]. 激光技术, 2016, 40(1): 82-85. |
JIANG Y F, LI J, PAN Y, et al. Investigation of effect of two-side laser shock order on small-hole specimen strengthening[J]. Laser Technology, 2016, 40(1): 82-85 (in Chinese). | |
58 | TAN Y, WU G, YANG J M, et al. Laser shock peening on fatigue crack growth behaviour of aluminium alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(8): 649-656. |
59 | YANG J M, HER Y C, HAN N L, et al. Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes[J]. Materials Science and Engineering: A, 2001, 298(1-2): 296-299. |
60 | SIKHAMOV R, FOMIN F, KLUSEMANN B, et al. The influence of laser shock peening on fatigue properties of AA2024-T3 alloy with a fastener hole[J]. Metals, 2020, 10(4): 495. |
61 | IVETIC G, MENEGHIN I, TROIANI E, et al. Fatigue in laser shock peened open-hole thin aluminium specimens[J]. Materials Science and Engineering: A, 2012, 534: 573-579. |
62 | LIU P, SUN S Y, XU S B, et al. Microstructure and properties in the weld surface of friction stir welded 7050-T7451 aluminium alloys by laser shock peening[J]. Vacuum, 2018, 152: 25-29. |
63 | 黄潇,曹子文,常明,等. 激光冲击强化对TC4钛合金单面修饰激光焊接接头疲劳性能的影响[J]. 中国机械工程, 2018, 29(1): 104-109. |
HUANG X, CAO Z W, CHANG M, et al. Effects of laser shock processing on fatigue performances of TC4 titanium alloy single-side laser modification welding joints[J]. China Mechanical Engineering, 2018, 29(1): 104-109 (in Chinese). | |
64 | 苏纯, 周建忠, 黄舒, 等. 激光冲击强化对6061-T6铝合金TIG焊接接头疲劳性能的影响[J]. 激光与光电子学进展, 2015, 52(6): 061403. |
SU C, ZHOU J Z, HUANG S, et al. Influence of laser shock processing on fatigue properties of 6061-T6 aluminum alloy TIG welded joints[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061403 (in Chinese). | |
65 | JIA W J, ZHAO H Z, ZAN Y X, et al. Effect of heat treatment and laser shock peening on the microstructures and properties of electron beam welded Ti-6.5Al-1Mo-1V-2Zr joints[J]. Vacuum, 2018, 155: 496-503. |
66 | KASHAEV N, USHMAEV D, VENTZKE V, et al. On the application of laser shock peening for retardation of surface fatigue cracks in laser beam-welded AA6056[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(7): 1500-1513. |
67 | LUONG H, HILL M R. The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy[J]. Materials Science and Engineering: A, 2010, 527(3): 699-707. |
68 | HU Y X, CHENG H, YU J H, et al. An experimental study on crack closure induced by laser peening in pre-cracked aluminum alloy 2024-T351 and fatigue life extension[J]. International Journal of Fatigue, 2020, 130: 105232. |
69 | VAN ASWEGEN D C, POLESE C. Experimental and analytical investigation of the effects of laser shock peening processing strategy on fatigue crack growth in thin 2024 aluminium alloy panels[J]. International Journal of Fatigue, 2021, 142: 105969. |
70 | DHAKAL B, SWAROOP S. Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy[J]. Journal of Materials Processing Technology, 2020, 282: 116640. |
71 | KELLER S, HORSTMANN M, KASHAEV N, et al. Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening[J]. International Journal of Fatigue, 2019, 124: 265-276. |
72 | PAVAN M, FURFARI D, AHMAD B, et al. Fatigue crack growth in a laser shock peened residual stress field[J]. International Journal of Fatigue, 2019, 123: 157-167. |
73 | BUSSE D, GANGULY S, FURFARI D, et al. Optimised laser peening strategies for damage tolerant aircraft structures[J]. International Journal of Fatigue, 2020, 141: 105890. |
74 | ZHENG X W, LUO P, YUE G Q, et al. Analysis of microstructure and high-temperature tensile properties of 2060 Al-Li alloy strengthened by laser shock peening[J]. Journal of Alloys and Compounds, 2021, 860: 158539. |
75 | LEAP M, RANKIN J, HARRISON J, et al. Fatigue lifetime improvement of arrestment hook shanks by application of laser peening[C]∥Proceedings of the 25th Symposium of the International Committee on Aeronautical Fatigue. Dordrecht: Springer, 2009: 355-361. |
76 | 牛一虹, 刘波, 丁同超, 等. 机翼机身接头耳片接触分析[J]. 塑性工程学报, 2012, 19(5): 115-119. |
NIU Y H, LIU B, DING T C, et al. Contact analysis of wing-fuselage connection joint lug[J]. Journal of Plasticity Engineering, 2012, 19(5): 115-119 (in Chinese). | |
77 | IM J, GRANDHI R V, RO Y. Residual stress behaviors induced by laser peening along the edge of curved models[J]. Journal of Mechanical Science and Technology, 2012, 26(12): 3943-3952. |
78 | VASU A, GOBAL K, GRANDHI R V. A computational methodology for determining the optimum re-peening schedule to increase the fatigue life of laser peened aircraft components[J]. International Journal of Fatigue, 2015, 70: 395-405. |
79 | MACGILLIVRAY L K, DANE B, OSBORNE M, et al. F-22 laser shock peening depot transition and risk reduction[C]∥Proceedings of the 2010 Aircraft Structural Integrity Program Conference, 2010. |
80 | POLIN L, BUNCH J, CARUSO P, et al. F-22 program full scale component tests to validate the effects of laser shock peening[C]∥Proceedings of the 2011 Aircraft Structural Integrity Program Conference, 2011. |
[1] | CHEN Lianguo, WANG Wensheng, ZHU Zhishou, ZHAO Yong, HUANG Jianyun, ZHANG Hai, PENG Fuhua. Development and application of large-scale damage tolerance titanium alloy TC4-DT [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523454-523454. |
[2] | DONG Anqi, ZHAO Xinqing, ZHAO Yan. Tension-tension fatigue performance of unidirectional out-of-autoclave composite manufactured by automated fiber placement [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(2): 421422-421422. |
[3] | HE Xiaofan, DONG Yinghao, LI Yuhai, LIU Wenting. Probabilistic fracture mechanics approach accounting for both the variability of load spectra and of structural properties [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(4): 1142-1149. |
[4] | HE Weifeng, LI Yinghong, NIE Xiangfan, LI Zhifeng, ZHOU Liucheng. Deformation Control and Fatigue Test of Blade Tenon by Laser Shock Peening [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(7): 2041-2048. |
[5] | Chen Qunzhi;Li Ximing;Zhou Xiyuan;Wang Yingli;Wu Zhen. INVESTIGATION OF CORROSION EQUIVALENT RELATIONSHIPS BETWEEN THE ACCELERATED ENVIRONMENT AND THE TYPICAL SERVICE ENVIRONMENTS OF AIRCRAFT STRUCTURES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1998, 19(4): 414-418. |
[6] | Sun Jianhua;Qu Shihong. ASTUDY ON FLIGHT LOAD ESTIMATION OF AIRCRAFT STRUCTURAL COMPONENTS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(1): 106-108. |
[7] | SunJianhua;QuShihong. A STUDY ON A PARAMETRIC IDENTIFICATION METHOD OF FLIGHT LOAD [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(1): 109-112. |
[8] | Sun Jianhua;Qu Shihong. ASTUDY ON FLIGHT LOAD ESTIMATION OF AIRCRAFT STRUCTURAL COMPONENTS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 1(1): 106-108. |
[9] | SunJianhua;QuShihong. A STUDY ON A PARAMETRIC IDENTIFICATION METHOD OF FLIGHT LOAD [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 1(1): 109-112. |
[10] | Shen Zhen;Tang Xiaodong;Chen Puhui. DAMAGE TOLERANCE AND DURABILITY DESIGN OF COMPOSITE AIRCRAFT STRUCTURES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1991, 12(12): 620-622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341