Acta Aeronautica et Astronautica Sinica
Previous Articles Next Articles
Received:2025-07-08
Revised:2025-09-29
Online:2025-10-09
Published:2025-10-09
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://hkxb.buaa.edu.cn/EN/10.7527/S1000-6893.2025.32528
| [1]LUO Y Z, YANG Z.A review of uncertainty propagation in orbital mechanics[J].Progress in Aerospace Sciences, 2017, 89(-):23-39[2]金紫涵, 温昶煊, 乔栋.卫星解体碎片云对低轨星座的碰撞影响分析[J].航空学报, 2024, 45(S1):211-220[3]JIN Z H, WEN C X, QIAO D.Impact analysis of satel-lite debris cloud on low-orbit constellation[J].Acta Aeronautica et Astronautica Sinica, 2024, 45(S1):211-220[4]卢哲俊, 胡卫东.基于随机有限集的空间碎片群运动状态估计[J].航空学报, 2017, 38(11):254-264[5]LU Z J, HU W D.State estimation of space debris group based on random finite set[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(11):254-264[6]李罡, 解放, 吴一凡, 等.深空导航技术发展展望[J].测绘学报, 2025, 54(03):397-409[7]LI G, JIE F, WU Y F, et al.Prospects for the develop-ment of deep space navigation technologies[J].Acta Geodaetica et Cartographica Sinica, 2025, 54(03):397-409[8]李培佳, 黄勇, 樊敏, 等.嫦娥五号探测器交会对接段定轨精度研究[J].中国科学: 物理学 力学 天文学, 2021, 51(11):66-77[9]LI P J, HUANG Y, FAN M, et al.Orbit determination for Chang' e-5 mission in rendezvous and docking[J].Science China Physics, Mechanics & Astronomy, 2021, 51(11):66-77[10]王巍, 邢朝洋, 冯文帅.自主导航技术发展现状与趋势[J].航空学报, 2021, 42(11):18-36[11]WANG W, XING Z Y, FENG W S.State of the art and perspectives of autonomous navigation technology[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(11):18-36[12]赵弘骞, 左宸昊, 岳晓奎, 等.失效航天器非接触式消旋技术发展综述[J].宇航学报, 2023, 44(12):1797-1809[13]ZHAO H Q, ZUO C H, YUE X K, et al.A review of the contactless detumbling technology for failed space-craft[J].Journal of Astronautics, 2023, 44(12):1797-1809[14]高振良, 孙小凡, 刘育强, 等.航天器在轨延寿服务发展现状与展望[J].航天器工程, 2022, 31(4):98-107[15]GAO Z L, SUN X F, LIU Y Q, et al.Development and prospect of spacecraft on-orbit life extension servic-ing[J].Spacecraft Engineering, 2022, 31(4):98-107[16]CHEN H, DAI H H, YUE X K.Optimal nutation sup-pressing method for detumbling satellites via a flexible deceleration device[J].Nonlinear Dynamics, 2023, 111(16):14977-14989[17]冯浩阳, 汪雪川, 岳晓奎, 等.航天器轨道递推及问题计算方法综述[J].航空学报, 2023, 44(13):6-26[18]FENG H Y, WANG X C, YUE X K, et al.A survey of computational methods for spacecraft orbit propagation and Lambert problems[J].Acta Aeronautica et Astro-nautica Sinica, 2023, 44(13):6-26[19]HAIRER E, NORSETT S, WANNER G.Solving ordi-nary differential equations I: Nonstiff problems[M]. Cham: Spring, 2013.[20]FILIPPI S, GRAF J.New Runge-Kutta-Nystr?m formula-pairs of order 8(7),9(8),10(9) and 11(10) for differential equations of the form y''= f (x,y)[J].Journal of Computational and Applied Mathematics, 1986, 14(3):361-370[21]FEHLBERG E.Low-order classical Runge-Kutta for-mulas with stepsize control and their application to some heat transfer problems[R]. Washington, USA: NASA, 1969.[22]BERRY M M, HEALY L M.Implementation of Gauss Jackson integration for orbit propagation[J].The Jour-nal of the Astronautical Sciences, 2004, 52(3):331-357[23]罗志才, 周浩, 钟波, 等.积分器算法分析与验证[J].武汉大学学报·信息科学版, 2013, 38(11):1364-1368[24]LUO Z C, ZHOU H, ZHONG B, et al.Analysis and validation of Gauss-Jackson integral algorithm[J].Ge-omatics and Information Science of Wuhan University, 2013, 38(11):1364-1368[25]陈文斌, 程晋, 吴新明, 等.微分方程数值解[M]. 上海: 复旦大学出版社, 2014: 55-127.[26]CHEN W B, CHENG J, WU X M, et al.Numerical so-lution of differential equations[M]. Shanghai: Fudan University Press, 2014: 55-127.[27]DORMAND J R, PRINCE P J.A family of embedded Runge-Kutta formulae[J].Journal of Computational and Applied Mathematics, 1980, 6(1):19-26[28]CLENSHAW C, NORTON H.The solution of nonline-ar ordinary differential equations in Chebyshev se-ries[J].The Computer Journal, 1963, 6(1):88-92[29]FUKUSHIMA T.Vector integration of dynamical mo-tions by the Picard-Chebyshev method[J].The Astro-nomical Journal, 1997, 113(6):2325-2328[30]BAI X L.Modified Chebyshev-Picard iteration meth-ods for solution of initial value and boundary value problems[D]. College Station: Texas A&M University, 2010: 3-96.[31]BAI X L, JUNKINS J.Modified Chebyshev-Picard iteration methods for orbit propagation[J].The Journal of the Astronautical Science, 2011, 58(4):583-613[32]BAI X L, JUNKINS J.Modified Chebyshev-Picard iteration methods for solution of boundary value prob-lems[J].The Journal of the Astronautical Sciences, 2011, 58(4):615-642[33]WANG X C, YUE X K, DAI H H, et al.Feedback-accelerated Picard iteration for orbit propagation and Lambert’s problem[J].Journal of Guidance, Control, and Dynamics, 2017, 40(10):2442-2451[34]WOOLLANDS R L, JUNKINS J.Nonlinear differen-tial equation solvers via adaptive Picard-Chebyshev it-eration: applications in astrodynamics[J].Journal of Guidance, Control, and Dynamics, 2019, 42(3):1-16[35]WANG Y K, NI G, LIU Y.Multistep Newton–Picard method for nonlinear differential equations[J].Journal of Guidance, Control, and Dynamics, 2020, 43(11):2148-2155[36]ATALLAH A M, WOOLLANDS R L, ELGOHARY T A, et al.Accuracy and efficiency comparison of six numerical integrators for propagating perturbed or-bits[J].The Journal of the Astronautical Sciences, 2020, 67(2):511-538[37]YAN Z P, DAI H H, WANG Q S, ATLURI S N.Har-monic balance methods: A review and recent develop-ment[J].CMES-Computer Modeling in Engineering and Sciences, 2023, 137(2):1419-1459[38]KOBLICK D, XU S, FOGEL J, et al.Low thrust min-imum time orbit transfer nonlinear optimization using impulse discretization via the modified Picard-Chebyshev method[J].Computer Modeling in Engi-neering & Sciences, 2016, 111(1):1-27[39]MASAT A, COLOMBO C, BOUTONNET A.Surfing chaotic perturbations in interplanetary multi-flyby tra-jectories: Augmented Picard-Chebyshev integration for parallel and GPU computing architectures[C]. AIAA Scitech 2022 Forum, San Diego, USA, January 3-7, 2022.[40]WANG X C, He W, FENG H Y, et al.Fast and accurate predictor-corrector methods using feedback-accelerated Picard iteration for strongly nonlinear problems[J].Computer Modeling in Engineering and Sciences, 2024, 139(2):1263--[41]FENG H Y, YUE X K, WANG X C.A class of lineari-zation-based collocation methods for initial value and boundary value engineering problems[J].Computer Physics Communications, 2023, 283(-):108601--[42]FENG H Y, YUE X K, WANG X C, et al.Decoupling and quasi-linearization methods for boundary value problems in relative orbital mechanics[J].Nonline-ar Dynamics, 2023, 111(1):199-215[43]FENG H Y, YUE X K, WANG X C.A quasi-linear local variational iteration method for orbit transfer problems[J].Aerospace Science and Technology, 2021, 119(-):107222--[44]MA Y Y, PAN B F.Parallel-structured Newton-type guidance by using modified Chebyshev-Picard itera-tion[J].Journal of Spacecraft and Rockets, 2020, 58(3):729-740[45]MA Y Y, PAN B F, HAO C C.Improved sequential convex programming using modified Chebyshev–Picard iteration for ascent trajectory optimization[J].Aerospace Science and Technology, 2022, 120(-):107234--[46]SONG Y, PAN B, FAN Q, et al.A computationally efficient sequential convex programming using Chebyshev collocation method[J].Aerospace Science and Technology, 2023, 141(-):108584--[47]WANG, C T, Dai H H, YANG, W C, et al.High-efficiency unscented Kalman filter for multi-target trajectory estimation[J].Aerospace Science and Technology, 2025, 159(-):109962--[48]ZHOU, Q,WANG, Y. K. and LIU, Y. C..Chebyshev–Picard iteration methods for solving delay differential equations[J].Mathematics and Computers in Simulation, 2024, 217(-):1-20[49]READ J L, YOUNES A B, MACOMBER B, et al.State transition matrix for perturbed orbital motion us-ing modified Chebyshev Picard iteration[J].The Journal of the Astronautical Sciences, 2015, 62(-):148-167[50]JUNKINS J, BANI Y, WOOLLANDS R L, et al.Picard iteration, Chebyshev polynomials and Chebyshev-Picard methods: application in astrodynamics[J].The Journal of the Astronautical Sciences, 2013, 60(-):623-653[51]WOOLLANDS M, AHMAD B, JUNKINS J.New solutions for the perturbed Lambert problem using reg-ularization and Picard iteration[J].Journal of Guidance, Control, and Dynamics, 2015, 38(9):1548-1562[52]SWENSON T, WOOLLANDS R L, JUNKINS J, et al.Application of modified Chebyshev Picard iteration to differential correction for improved robustness and computation time[J].Journal of Astronaut Science, 2017, 64(3):267-284[53]WANG X C, XU Q, ATLURI S.[J].Combination of the variational iteration method and numerical algorithms for nonlinear problems, 2020, 79(-):243-259[54]ATALLAH A M, WOOLLANDS R M, YOUNES A B, et al.Tuning orthogonal polynomial degree and seg-ment interval length to achieve prescribed precision approximation of irregular functions[C]. Space Flight Mechanics Meeting, Kissimmee, USA, January 8-12, 2018.[55]WANG X C, ELGOHARY T A.ATLURI S N. An adaptive local variational iteration method for orbit propagation and strongly nonlinear dynamical sys-tems[C]. AIAA Scitech Forum, Orlando, USA, January 6-10, 2020.[56]张哲, 代洪华, 冯浩阳等.初值约束与两点边值约束轨道动力学方程的快速数值计算方法[J].力学学报, 2022, 54(2):503-516[57]ZHANG Z, DAI H H, FENG H Y, et al.Efficient nu-merical method for orbit dynamic functions with initial value and two-point boundary-value constraints[J].Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2):503-516[58]DAI H H, ZHANG Z, WANG X C, et al.Fast and accurate adaptive collocation iteration method for orbit dynamic problems[J].Chinese Journal of Aeronautics, 2023, 36(9):231-242[59]WANG Y K, NI G, LIU Y.Revised Picard–Chebyshev methods for perturbed orbit propagations[J].Journal of Guidance, Control, and Dynamics, 2023, 46(1):161-170[60]MASAT A, COLOMBO C, BOUTONNET A.GPU-based high-precision orbital propagation of large sets of initial conditions through Picard-Chebyshev augmentation[J].Acta Astronautica, 2023, 204(-):239-252[61]WANG Y K.Parallel numerical Picard iteration methods[J].Journal of Scientific Computing, 2023, 95(1):27--[62]JUNKINS L, YOUNES A B, BAI X L.Orthogonal polynomial approximation in higher dimensions: Applications in astrodynamics[J].Advances in the Astronautical Sciences, 2013, 147(-):531-594[63]YOUNES A B.Orthogonal polynomial approximation in higher dimensions: Applications in astrodynam-ics[D]. Texas: Texas A&M, College Station, 2013.[64]MONTENBRUCK, O, GILL, E.Satellite orbits: mod-els, methods and applications[M]. Berlin: Springer, 2000.[65]ATALLAH A M, YOUNES A B.Parallel Chebyshev Picard method[C]. AIAA Scitech 2020 Forum, Orlando, USA, January 6-10, 2020.[66]ATALLAH A M, YOUNES A B.Parallel evaluation of Chebyshev approximations: applications in astrody-namics[J].The Journal of the Astronautical Sciences, 2022, 69(3):692-717[67]CHANDRA R, MENON R, DAGUM L, and et al.Parallel programming in OpenMP[M]. San Francisco: Academic Press, 2001.[68]王昌涛, 代洪华, 张哲等.并行加速的局部变分迭代法及其轨道计算应用[J].力学学报, 2023, 55(4):991-1003[69]WANG C T, DAI H H, ZHANG Z, et al.Parallel ac-celerated local variational iteration method and its ap-plication in orbit computation[J].Chinese Journal of The-oretical and Applied Mechanics, 2023, 55(4):991-1003[70]COOK S.CUDA并行程序设计: GPU编程指南[M]. 苏统华, 李东, 李松泽, 魏通, 译. 北京: 机械工业出版社, 2014.[71]COOK S.CUDA parallel programming: GPU pro-gramming guide[M]. SU T H, LI D, LI S Z, WEI T, translated. Beijing: China Machine Press, 2014 (in Chinese).[72]朱新忠.星载嵌入式计算机技术与应用[M]. 上海: 上海科学技术出版社, 2023.[73]ZHU X Z.Technology and Application of Satellite Embedded Computer[M]. Shanghai: Shanghai Scien-tific & Technical Publishers, 2023 (in Chinese).[74]虞志刚, 冯旭, 陆洲, 等.宇航级处理器发展现状与趋势[J].天地一体化信息网络, 2023, 4(1):50-58[75]YU Z G, FENG X, LU Z, et al.Development status and trends of space processor[J].Space-Integrated-Ground Information Networks, 2023, 4(1):50-58[76]陆士强, 梁赫光, 刘东洋.国产化星载计算机技术现状和发展思考[J].移动信息, 2018, 6(-):126-129[77]LU S Q, LIANG H G, LIU D Y.Thoughts on the status quo and development of localized onboard computer technology[J].Mobile Information, 2018, 6(-):126-129[78]李兴伟, 白博, 周军.基于的立方星可重构星载处理系统研究[J].计算机测量与控制, 2018, 26(8):172-176[79]LI X W, BAI B, ZHOU J.Research on reconfigurable board processing system of cube sat based on FPGA[J].Computer Measurement & Control, 2018, 26(8):172-176[80]徐国栋, 赵丹, 向文豪, 等.可重构的卫星运载复用电子系统设计[J].航空学报, 2009, 30(07):1298-1304[81]XU G D, ZHAO D, XIANG W H, et al.Design of re-configurable and reusable electronic systems for satel-litelaunch vehicles[J].Acta Aeronautica et Astronauti-ca Sinica, 2009, 30(07):1298-1304[82]CHOI Y K.Performance debugging frameworks for FPGA high-level synthesis[D]. Los Angeles: University of California, 2019.[83]ZHANG J Y, YU H C, Dai H H.Overview of Earth-Moon transfer trajectory modeling and design[J].Computer Modeling in Engineering & Sciences, 2022, 135(1):5-43[84]雷汉伦.平动点、不变流形及低能轨道[D]. 南京: 南京大学, 2015.[85]LEI H L.Equilibrium point, invariant manifold and low-energy trajectory[D]. Nanjing: Nanjing University, 2015 (in Chinese).[86]刘林, 侯锡云.深空探测轨道力学[M]. 北京: 电子工业出版社, 2012.[87]LIU L, HOU X Y.Deep space exploration orbital me-chanics[M]. Beijing: Publishing House of Electronics Industry, 2012 (in Chinese).[88]泮斌峰.航天器制导理论与方法[M]. 北京: 科学出版社, 2023.[89]Pan B F.Spacecraft guidance theory and methods[M]. Beijing: Science Press, 2023 (in Chinese).[90]DI MAURO G, LAWN M, BEVILACQUA R.Survey on guidance navigation and control requirements for spacecraft formation-flying missions[J].Journal of Guidance, Control, and Dynamics, 2018, 41(3):581-602 |
| [1] | Dapeng ZHOU, Xiaolei QU. Knowledge-based intelligent pigeon-inspired optimization of carrier-based aircraft landing control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730801-730801. |
| [2] | Guanghan XIAO, Zeyan HU, Junhu LIU, Liang WANG, Qingtang MAO. A design method of even-fold continuous-coverage constellation for space targets [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 229637-229637. |
| [3] | Shuaiwen TANG, You CAO, Peng ZHANG, Jiang JIANG. Health assessment of LIMU based on evidential reasoning rule with dependent evidence [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 329453-329453. |
| [4] | Kaiming ZHANG, Kelu WANG, Shiqiang LU, Mutong LIU, Ping ZHONG, Ye TIAN. Thermal deformation behavior of S280 ultra-high strength stainless steel based on response surface methodology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427293-427293. |
| [5] | Baohui JIA, Fan JIANG, Yuxin WANG, Du WANG. Fault diagnosis method based on civil aircraft maintenance text data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326598-326598. |
| [6] | Yuhang XIA, Yu WANG. Comparative study on optimal control methods of independent excitation DC power generation system [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 327975-327975. |
| [7] | Haoyang FENG, Xuechuan WANG, Xiaokui YUE, Changtao WANG. A survey of computational methods for spacecraft orbit ropagation and Lambert problems [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 28027-028027. |
| [8] | CAO Yi, MENG Gang, JU Yongjian, XU Weisheng. Large-stroke compliant micro-positioning stage considering parasitic rotation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 425498-425498. |
| [9] | WU Baohai, ZHANG Yang, ZHENG Zhiyang, ZHANG Ying, ZHANG Siqi. Review and prospects of feedrate optimization in CNC machining [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525467-525467. |
| [10] | WANG Bin, WANG Haitao, WANG Yufeng, ZHANG Wenwu. Water-assisted laser scanning machining test of thermal barrier coating [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525353-525353. |
| [11] | CHEN Jianqiang, WU Xiaojun, ZHANG Jian, LI Bin, JIA Hongyin, ZHOU Naichun. FlowStar: General unstructured-grid CFD software for National Numerical Windtunnel (NNW) Project [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 625739-625739. |
| [12] | GUO Lei, GAO Yuan, XIN Hui. Laser modification parameters optimization and structural design of thermal barrier coatings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 424114-424114. |
| [13] | WU Aiguo, GONG Zhihao. Optimization of aerocapture orbit based on improved pigeon inspired optimization algorithms [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 324292-324292. |
| [14] | LIU Yiming, SHENG Wen, HU Bing, ZHANG Lei. Long time tracking beam scheduling and waveform optimization strategy for phased array radar [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 323519-323519. |
| [15] | HUANG Jiangtao, ZHANG Yidian, GAO Zhenghong, YU Jing, ZHOU Zhu, YU Lei. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(5): 122505-122505. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

