ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (8): 427293-427293.doi: 10.7527/S1000-6893.2022.27293
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
Kaiming ZHANG1, Kelu WANG1(), Shiqiang LU1, Mutong LIU2, Ping ZHONG2, Ye TIAN2
Received:
2022-04-19
Revised:
2022-05-12
Accepted:
2022-06-14
Online:
2023-04-25
Published:
2022-06-17
Contact:
Kelu WANG
E-mail:wangkelu@126.com
CLC Number:
Kaiming ZHANG, Kelu WANG, Shiqiang LU, Mutong LIU, Ping ZHONG, Ye TIAN. Thermal deformation behavior of S280 ultra-high strength stainless steel based on response surface methodology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427293-427293.
Table 2
Thermal deformation activation energies at strain of 0.69
应变速率/s-1 | 热变形激活能/(kJ·mol-1) | ||||||
---|---|---|---|---|---|---|---|
T=850 ℃ | T=900 ℃ | T=950 ℃ | T=1 000 ℃ | T=1 050 ℃ | T=1 100 ℃ | T=1 150 ℃ | |
0.001 | 310.970 8 | 324.512 6 | 304.970 1 | 316.424 9 | 358.024 8 | 372.245 1 | 313.119 3 |
0.01 | 332.221 1 | 346.688 3 | 325.810 4 | 338.048 0 | 382.490 6 | 397.682 6 | 334.516 4 |
0.1 | 345.266 0 | 360.301 2 | 338.603 5 | 351.321 7 | 397.509 4 | 413.297 9 | 347.651 4 |
1 | 330.178 3 | 344.556 6 | 323.807 0 | 335.969 4 | 380.138 7 | 395.237 3 | 332.459 5 |
Table 3
ln Z at strain of 0.69
应变速率/s-1 | ln Z | ||||||
---|---|---|---|---|---|---|---|
T=850 ℃ | T=900 ℃ | T=950 ℃ | T=1 000 ℃ | T=1 050 ℃ | T=1 100 ℃ | T=1 150 ℃ | |
0.001 | 26.398 8 | 26.367 6 | 23.085 3 | 22.989 6 | 25.641 6 | 25.702 1 | 19.558 6 |
0.01 | 30.977 4 | 30.944 1 | 27.437 4 | 27.335 2 | 30.168 5 | 30.233 1 | 23.669 8 |
0.1 | 34.677 2 | 34.642 6 | 30.998 2 | 30.891 9 | 33.836 5 | 33.903 6 | 27.082 6 |
1 | 35.363 8 | 35.330 7 | 31.845 6 | 31.743 9 | 34.559 8 | 34.624 0 | 28.101 1 |
Table 4
Strain rate sensitivity exponent m at strain of 0.69
应变速率/s-1 | m | ||||||
---|---|---|---|---|---|---|---|
T=850 ℃ | T=900 ℃ | T=950 ℃ | T=1 000 ℃ | T=1 050 ℃ | T=1 100 ℃ | T=1 150 ℃ | |
0.001 | -1.695 8 | 1.404 0 | 2.214 2 | 0.726 7 | 0.815 4 | 4.041 4 | -2.238 0 |
0.01 | -0.588 3 | 0.666 9 | 1.061 1 | 0.466 6 | 0.567 9 | 1.822 2 | -0.654 1 |
0.1 | -0.030 1 | 0.199 1 | 0.320 2 | 0.218 9 | 0.284 5 | 0.475 0 | 0.075 1 |
1 | -0.021 2 | 0.000 3 | -0.008 3 | -0.016 4 | -0.034 9 | -0.000 1 | -0.050 5 |
Table 5
Response surface model variance analysis of thermal deformation activation energy Q
方差来源 | 平方和 | 自由度 | 均方值 | 统计量F | 概率P |
---|---|---|---|---|---|
模型 | 31 969.52 | 9 | 3 552.17 | 188.08 | <0.000 1 |
T | 365.93 | 1 | 365.93 | 19.38 | 0.007 0 |
lg | 1 397.24 | 1 | 1 397.24 | 73.98 | 0.000 4 |
ε | 28 788.83 | 1 | 28 788.83 | 1 524.31 | <0.000 1 |
T lg | 0.092 | 1 | 0.092 | 4.857×10-3 | 0.947 1 |
Tε | 446.64 | 1 | 446.64 | 23.65 | 0.004 6 |
ε lg | 122.60 | 1 | 122.60 | 6.49 | 0.051 4 |
T2 | 195.56 | 1 | 195.56 | 10.35 | 0.023 5 |
lg2 | 469.40 | 1 | 469.40 | 24.85 | 0.004 2 |
ε2 | 306.32 | 1 | 306.32 | 16.22 | 0.010 0 |
残差 | 94.43 | 5 | 18.89 | ||
失拟项 | 94.43 | 3 | 31.48 | ||
纯误差 | 0 | 2 | 0 | ||
总和 | 32 063.95 | 14 |
1 | 钟平, 张业勤, 钟锦岩, 等. 一种新型结构材料S280[J]. 科技导报, 2015, 33(11): 59-62. |
ZHONG P, ZHANG Y Q, ZHONG J Y, et al. A new type of structural material S280[J]. Science and Technology Review, 2015, 33(11): 59-62 (in Chinese). | |
2 | 刘振宝, 梁剑雄, 苏杰, 等. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557. |
LIU Z B, LIANG J X, SU J, et al. Research and application progress in ultra-high strength stainless steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 549-557 (in Chinese). | |
3 | 张睦林, 朱立群, 刘慧丛, 等. 300M超高强度钢在模拟积水环境中的腐蚀行为[J]. 航空学报, 2013, 34(4): 954-962. |
ZHANG M L, ZHU L Q, LIU H C, et al. Corrosion behavior of 300M ultra-high strength steel in simulated gap water environment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 954-962 (in Chinese). | |
4 | 钟锦岩, 张业勤, 韩雅芳. S280新型超高强不锈钢中一种新析出相研究[J]. 稀有金属材料与工程, 2019, 48(1): 116-122. |
ZHONG J Y, ZHANG Y Q, HAN Y F. New phase precipitated from the new type of ultrahigh strength stainless steel S280[J]. Rare Metal Materials and Engineering, 2019, 48(1): 116-122 (in Chinese). | |
5 | ZHONG J Y, CHEN Z, YANG S L, et al. Effect of solution and aging temperatures on microstructure and mechanical properties of 10Cr13Co13Mo5Ni3W1VE (S280) steel[J]. Micromachines, 2021, 12(5): 566-579. |
6 | 詹中伟, 孙志华, 汤智慧. 化学钝化对S280超高强度不锈钢综合性能的影响[J]. 腐蚀与防护, 2015, 36(8): 742-747, 758. |
ZHAN Z W, SUN Z H, TANG Z H. Effect of chemical passivation on properities of S280 ultra high-strength stainless steel[J]. Corrosion & Protection, 2015, 36(8): 742-747, 758 (in Chinese). | |
7 | 田帅, 刘培根. 喷丸强化对S280新型超高强度不锈钢疲劳性能的影响[J]. 材料保护, 2013, 46(7): 16-18, 6. |
TIAN S, LIU P G. Influence of shot peening on fatigue behavior of S280 ultrahigh strength stainless steel[J]. Materials Protection, 2013, 46(7): 16-18, 6 (in Chinese). | |
8 | 吴道祥, 周杰, 马鹏程, 等. 基于响应面法的7050铝合金筋板类锻件热模锻成形工艺优化[J]. 中南大学学报(自然科学版), 2017, 48(3): 601-607. |
WU D X, ZHOU J, MA P C, et al. Optimization of hot die forging process parameters of 7050 aluminum alloy rib-web type components based on response surface method[J]. Journal of Central South University (Science and Technology), 2017, 48(3): 601-607 (in Chinese). | |
9 | 李萍, 丁永根, 姚彭彭, 等. 基于响应面法的TA15钛合金显微组织预报和优化[J]. 中国有色金属学报, 2016, 26(5): 1019-1026. |
LI P, DING Y G, YAO P P, et al. Prediction and optimization of TA15 titanium alloy microstructure based on response surface methodology[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(5): 1019-1026 (in Chinese). | |
10 | SHEN Z N, WU R D, YUAN C L, et al. Comparative study of metamodeling methods for modeling the constitutive relationships of the TC6 titanium alloy[J]. Journal of Materials Research and Technology, 2021, 10: 188-204. |
11 | 徐勇, 尹阔, 夏亮亮, 等. 面向航空铝合金薄壁深腔构件的冲击液压成形工艺优化[J]. 航空学报, 2021, 42(10): 524831. |
XU Y, YIN K, XIA L L, et al. Optimization of impact hydroforming process for aeronautical components of aluminum alloy sheets with thin wall and deep cavity[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524831 (in Chinese). | |
12 | LONG J C, XIA Q X, XIAO G F, et al. Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps[J]. International Journal of Mechanical Sciences, 2021, 191: 106069. |
13 | BABU K A, PRITHIV T S, GUPTA A, et al. Modeling and simulation of dynamic recrystallization in super austenitic stainless steel employing combined cellular automaton, artificial neural network and finite element method[J]. Computational Materials Science, 2021, 195: 110482. |
14 | JIANG Y Q, LIN Y C, WANG G Q, et al. Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β region[J]. Journal of Alloys and Compounds, 2021, 870: 159534. |
15 | XIAO Y W, LIN Y C, JIANG Y Q, et al. A dislocation density-based model and processing maps of Ti-55511 alloy with bimodal microstructures during hot compression in α+β region[J]. Materials Science and Engineering: A, 2020, 790: 139692. |
16 | LU C Y, WANG J, ZHANG P Z. Flow behavior analysis and flow stress modeling of Ti17 alloy in β forging process[J]. Journal of Materials Engineering and Performance, 2021, 30(10): 7668-7681. |
17 | 尚丽梅, 王春旭, 韩顺, 等. 基于摩擦-温度双修正的Maraging250钢热变形行为及热加工图[J]. 金属热处理, 2021, 46(5): 111-117. |
SHANG L M, WANG C X, HAN S, et al. Hot deformation behavior and processing maps of Maraging250 steel based on friction and temperature double correction[J]. Heat Treatment of Metals, 2021, 46(5): 111-117 (in Chinese). | |
18 | LI L X, WANG G, LIU J, et al. Flow softening behavior and microstructure evolution of Al-5Zn-2Mg aluminum alloy during dynamic recovery[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 42-48. |
19 | MOON J, JO H H, HA H Y, et al. Microstructure evolution and hot deformation behavior of 25Cr-6Mn-3Ni-1Mo-3W-0.1C-0.34N lean duplex stainless steel[J]. Journal of Materials Research and Technology, 2021, 14: 186-194. |
20 | 牛长胜, 王艳丽, 林均品, 等. Fe3Si基合金的动态再结晶机制[J]. 金属热处理学报, 2003, 24(1): 28-32, 92. |
NIU C S, WANG Y L, LIN J P, et al. Dynamic recrystallization mechanism of the Fe3Si based alloy[J]. Transactions of Metal Heat Treatment, 2003, 24(1): 28-32, 92 (in Chinese). | |
21 | YU S, WAN Z P, HU L X, et al. Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map[J]. Materials & Design, 2015, 86: 922-932. |
22 | 亓耀国, 郭子鹏, 王兆天, 等. Ti-Al-Nb合金的热变形与动态再结晶行为研究[J]. 精密成形工程, 2020, 12(6): 69-76. |
QI Y G, GUO Z P, WANG Z T, et al. Thermal deformation and dynamic recrystallization of Ti-Al-Nb alloys[J]. Journal of Netshape Forming Engineering, 2020, 12(6): 69-76 (in Chinese). | |
23 | QIU Q, WANG K L, LI X, et al. Hot deformation behavior and processing parameters optimization of SP700 titanium alloy[J]. Journal of Materials Research and Technology, 2021, 15: 3078-3087. |
24 | 曹富荣, 崔建忠, 丁桦, 等. 不同初始组织材料超塑性m值模型与验证[J]. 哈尔滨工业大学学报, 2015, 47(10): 50-54. |
CAO F R, CUI J Z, DING H, et al. Modeling them value and its experimental verification during superplasticity of materials with different initial microstructures[J]. Journal of Harbin Institute of Technology, 2015, 47(10): 50-54 (in Chinese). | |
25 | BOX G E P, WILSON K B. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1951, 13(1): 1-38. |
26 | 陈利文, 侯华, 靳玉春, 等. 基于响应面法的铝合金间接挤压铸造工艺研究[J]. 稀有金属材料与工程, 2018, 47(4): 1174-1179. |
CHEN L W, HOU H, JIN Y C, et al. Indirect squeeze casting process of aluminum alloy based on response surface method[J]. Rare Metal Materials and Engineering, 2018, 47(4): 1174-1179 (in Chinese). | |
27 | 豆建新, 熊江涛, 陈丹, 等. 7050铝合金回填式搅拌摩擦点焊组织与性能研究[J]. 精密成形工程, 2019, 11(6): 81-88. |
DOU J X, XIONG J T, CHEN D, et al. Microstructures and mechanical properties of refill friction stir spot welded 7050 aluminium alloy[J]. Journal of Netshape Forming Engineering, 2019, 11(6): 81-88 (in Chinese). | |
28 | WANG J M, LAN S, LI W K. Numerical simulation and process optimization of an aluminum holding furnace based on response surface methodology and uniform design[J]. Energy, 2014, 72: 521-535. |
29 | SHI C, MAO W, CHEN X G. Evolution of activation energy during hot deformation of AA7150 aluminum alloy[J]. Materials Science and Engineering: A, 2013, 571: 83-91. |
30 | XIAO Z B, WANG Q, HUANG Y C, et al. Hot deformation characteristics and processing parameter optimization of Al-6.32Zn-2.10Mg alloy using constitutive equation and processing map[J]. Metals, 2021, 11(2): 360. |
31 | 王兴茂, 丁雨田, 高钰璧, 等. 一种新型Ni-Cr-Co基合金的热变形行为及其组织演变[J]. 稀有金属材料与工程, 2022, 51(1): 249-259. |
WANG X M, DING Y T, GAO Y B, et al. Hot deformation behavior and microstructure evolution of new-type Ni-Cr-Co based alloy[J]. Rare Metal Materials and Engineering, 2022, 51(1): 249-259 (in Chinese). |
[1] | WANG Bin, WANG Haitao, WANG Yufeng, ZHANG Wenwu. Water-assisted laser scanning machining test of thermal barrier coating [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525353-525353. |
[2] | XU Yong, YIN Kuo, XIA Liangliang, MEN Xiangnan, ZENG Yipan, ZHANG Shihong. Optimization of impact hydroforming process for aeronautical components of aluminum alloy sheets with thin wall and deep cavity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524831-524831. |
[3] | WANG Yan, LI Shu, XU Qiuyi, MA Jun. Optimization design and analysis of stiffened composite panels in post-buckling under shear [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(5): 1512-1525. |
[4] | FEI Chengwei, BAI Guangchen. Reliability Analysis for HPT Blade-tip Radial Running Clearance Based on DCRSM [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(9): 2141-2149. |
[5] | ZHAO Wei, WANG Wei. Application of Non-linear Partial Least Squares Regression Method to Response Surface Method with Uniform Design [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, (5): 839-847. |
[6] | ZHANG Junhong, HAN Jinglong, WANG Xiaoqing. Flutter Optimization of Wing Structure with Random Uncertainty [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(9): 1629-1636. |
[7] | Jiang Wan;Jin Haibo;Sun Weiping. Aerodynamic Optimization for Winglets Based on Multi-level Response Surface Method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(9): 1746-1751. |
[8] | Deng Lei;Qiao Zhide;Xiong Juntao;Yang Xudong. Multi-objective Inverse Design of Natural Laminar Flow Airfoils [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(7): 1373-1378. |
[9] | LU Zhen-zhou;YANG Zi-zheng;ZHAO Jie. An Artificial Neural Network Method for Reliability Analysis Based on Weighted Linear Response Surface [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(6): 1063-1067. |
[10] | ZHANG Ke-shi;HAN Zhong-hua;LI Wei-ji;LI Xiang. Multidisciplinary Aerodynamic/Structural Design Optimization for High Subsonic Transport Wing Using Approximation Technique [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(5): 810-815. |
[11] | XIONG Jun-tao;QIAO Zhi-de;HAN Zhong-hua. Optimum Aerodynamic Design of Transonic Wing Based on Response Surface Methodology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(3): 399-402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341