| [1] Abu Salem K, Palaia G, Bravo-Mosquera P D, et al.A review of novel and non-conventional propulsion integrations for next-generation aircraft[J]. Designs, 2024, 8(2): 20.[2] Chen Q, Sheng H, Li J, et al. Model-based improved advanced adaptive performance recovery control method for a commercial turbofan engine[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 7440-7454.[3] Kordestani M, Orchard M E, Khorasani K, et al. An overview of the state of the art in aircraft prognostic and health management strategies[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-15.[4] 赵洪利, 张猛. 基于随机维纳过程的航空发动机性能衰退研究[J]. 推进技术, 2021, 42(3): 488.ZHAO Hong-li,ZHANG Meng. Performance Degradation of Aeroengines Based on Stochastic Wiener Process[J]. Journal of Propulsion Technology,2021,42(3):488-494.[5] M. G. De Giorgi, N. Menga, A. Ficarella, Exploring prognostic and diagnostic techniques for jet engine health monitoring: A review of degradation mechanisms and advanced prediction strategies, Energies 16 (2023) 2711.[6] Q. Chen, H. Sheng, T. Zhang, A novel direct performance adaptive control of aero-engine using subspace-based improved model predictive control, Aerospace Science and Technology 128 (2022) 107760[7] 曹明,王鹏,左洪福,等.民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ:地面综合诊断、寿命管理和智能维护维修决策 [J].航空学报,2022, 43(9): 625574.CAO M, WANG P, ZUO H F, et all. Current status, challenges and opportunitites of civil aero-engine diagnostics & health management II: Comprehensive off-board diagnosis, life management and intelligent condition based MRO [J]. Acta Aeronautica et Astronautica Sinica,2022,43(9):625574(in Chinese). doi:10.7524/S1000-6893.2021.25574 [8] Fentaye A D, Zaccaria V, Kyprianidis K. Aircraft engine performance monitoring and diagnostics based on deep convolutional neural networks[J]. Machines, 2021, 9(12): 337.[9] Rath N, Mishra R K, Kushari A. Aero engine health monitoring, diagnostics and prognostics for condition-based maintenance: An overview[J]. International journal of turbo & jet-engines, 2024, 40(s1): s279-s292.[10] 陶飞, 孙清超, 孙惠斌, 等. 航空发动机数字孪生工程: 内涵与关键技术[J]. 航空学报, 2024, 45(21): 630283.TAO F, SUN Q C, SUN H B, et al. Aero-engine digital twin engineering: Connotation and key technologies [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 630283(in Chinese). doi: 10. 7527/S1000-6893. 2024. 30283.[11] A. J. Volponi, R. Rajamani, Hybrid models for engine health management, Machine Learning and Knowledge Discovery for Engineering Systems Health Management (2012) 395–422.[12] S. Kim, K. Kim, C. Son, Transient system simulation for an aircraft engine using a data-driven model, Energy 196 (2020) 117046.[13] 董威,尹家录,郑培英,等. 航空发动机及燃气轮机整机性能仿真综述[J]. 航空发动机,2023,49(5):8-21.DONG Wei,YIN Jialu,ZHENG Peiying,et al. Review: engine-level performance simulation of aeroengine and gas turbines[J]. Aeroengine,2023,49(5):8-21.[14] S. Pang, Q. Li, H. Feng, A hybrid onboard adaptive model for aero-engine parameter prediction, Aerospace Science and Technology 105 (2020) 105951.[15] A. González-Mu?iz, I. Diaz, A. A. Cuadrado, D. García-Pérez, Health indicator for machine condition monitoring built in the latent space of a deep autoencoder, Reliability Engineering & System Safety 224 (2022) 108482.[16] Xinglong ZHANG;Zhonglin LIN;Runmin JI;Tianhong ZHANG. Deep reinforcement learning based active surge control for aeroengine compressors [J]. Chinese Journal of Aeronautics, 2024, 37(7): 418–438.[17] 马博文, 巫骁雄, 于洋. 基于机器学习方法的压气机落后角与总压损失预测代理模型[J]. 航空动力学报, 2023, 38(7):1675-1690 doi: 10.13224/j.cnki.jasp.20220749MA Bowen, WU Xiaoxiong, YU Yang. Surrogate model for deviation angle and total pressure loss prediction of compressor based on machine learning methods[J]. Journal of Aerospace Power, 2023, 38(7):1675-1690 doi: 10.13224/j.cnki.jasp.20220749[18] 蔡舒妤,殷航,史涛,等.基于ResNet-LSTM的航空发动机性能异常检测方法[J]. 航空发动机, 2024, 50(1):135-142.CAI Shuyu,YIN Hang,SHI Tao,et al.Aero-engine performance anomaly detection method based on ResNet-LSTM[J]. Aeroengine, 2024, 50(1):135-142.[19] K. Zhao, Z. Jia, F. Jia, H. Shao, Multi-scale integrated deep self-attention network for predicting remaining useful life of aero-engine, Engineering Applications of Artificial Intelligence 120 (2023) 105860.[20] L. Zhou, H. Wang, S. Xu, Aero-engine prognosis strategy based on multi-scale feature fusion and multi-task parallel learning, Reliability Engineering & System Safety 234 (2023) 109182.[21] I. de Pater, A. Reijns, M. Mitici, Alarm-based predictive maintenance scheduling for aircraft engines with imperfect remaining useful life prognostics, Reliability Engineering & System Safety 221 (2022) 108341.[22] I. de Pater, M. Mitici, Developing health indicators and rul prognostics for systems with few failure instances and varying operating conditions using a lstm autoencoder, Engineering Applications of Artificial Intelligence 117 (2023) 105582.[23] Y. Huang, J. Tao, G. Sun, H. Zhang, Y. Hu, A prognostic and health management framework for aero-engines based on a dynamic probability model and lstm network, Aerospace 9 (2022) 316.[24] Y. Zhang, Y. Xin, Z.-w. Liu, M. Chi, G. Ma, Health status assessment and remaining useful life prediction of aero-engine based on bigru and mmoe, Reliability Engineering & System Safety 220 (2022) 108263.[25] M. G. De Giorgi, L. Strafella, N. Menga, A. Ficarella, Intelligent combined neural network and kernel principal component analysis tool for engine health monitoring purposes, Aerospace 9 (2022) 118.[26] F. Lu, J. Wu, J. Huang, X. Qiu, Aircraft engine degradation prognostics based on logistic regression and novel os-elm algorithm, Aerospace Science and Technology 84 (2019) 661–671. [27] Z. Li, D. Wu, C. Hu, J. Terpenny, An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction, Reliability Engineering & System Safety 184 (2019) 110–122. [28] G. Protopapadakis, A. Apostolidis, A. I. Kalfas, Explainable and interpretable ai-assisted remaining useful life estimation for aeroengines, in: Turbo Expo: Power for Land, Sea, and Air, volume 85987, American Society of Mechanical Engineers, 2022, p. V002T05A002. [29] Y. Huang, J. Tao, J. Zhao, G. Sun, K. Yin, J. Zhai, Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine, Energy (2023) 129120. [30] H. Li, L. Gou, H. Li, Z. Liu, Physics-guided neural network model for aeroengine control system sensor fault diagnosis under dynamic conditions, Aerospace 10 (2023) 644. [31] Xiao D, Lin Z, Yu A, et al. Data-driven method embedded physical knowledge for entire lifecycle degradation monitoring in aircraft engines[J]. Reliability Engineering & System Safety, 2024, 247: 110100.[32] M. A. Chao, C. Kulkarni, K. Goebel, O. Fink, Fusing physics-based and deep learning models for prognostics, Reliability Engineering & System Safety 217 (2022) 107961. |