Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (21): 629516.doi: 10.7527/S1000-6893.2023.29516
• Special Topic: Aero-engine Digital Twin • Previous Articles Next Articles
Shuai GAO1,2, Qinkai HAN2(
), Fulei CHU2
Received:2023-09-01
Revised:2023-09-20
Accepted:2023-11-27
Online:2024-11-15
Published:2023-12-18
Contact:
Qinkai HAN
E-mail:hanqinkai@mail.tsinghua.edu.cn
Supported by:CLC Number:
Shuai GAO, Qinkai HAN, Fulei CHU. High precision triboelectric bearing sensor driven by digital twin of aero engine[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 629516.
| 1 | HARRIS T A, KOTZALAS M N. Advanced concepts of bearing technology: Rolling bearing analysis[M]. 5th ed. New York: CRC Press, 2006. |
| 2 | 景新, 曹宏瑞, 陈雪峰. 保持架打滑对航空发动机主轴承故障特征频率的影响[J]. 航空动力学报, 2019, 34(5): 1145-1152. |
| JING X, CAO H R, CHEN X F. Effect of cage slipping on fault characteristic frequencies of aeroengine main-shaft bearings[J]. Journal of Aerospace Power, 2019, 34(5): 1145-1152 (in Chinese). | |
| 3 | 彭城, 曹宏瑞, 朱玉彬, 等. 三点接触球轴承打滑动力学分析与验证[J]. 机械工程学报, 2023, 59(1): 123-130. |
| PENG C, CAO H R, ZHU Y B, et al. Dynamic analysis and verification on skidding behavior of three-point contact ball bearings[J]. Journal of Mechanical Engineering, 2023, 59(1): 123-130 (in Chinese). | |
| 4 | 崔永存. 基于轴承元件动不平衡量的高速圆柱滚子轴承性能研究[D]. 西安: 西北工业大学, 2019: 3-18. |
| CUI Y C. Study on performance of high-speed cylindrical roller bearing based on dynamic unbalance of bearing elements[D].Xi’an: Northwestern Polytechnical University, 2019: 3-18 (in Chinese). | |
| 5 | GAO S, CHATTERTON S, NALDI L, et al. Ball bearing skidding and over-skidding in large-scale angular contact ball bearings: Nonlinear dynamic model with thermal effects and experimental results[J]. Mechanical Systems and Signal Processing, 2021, 147: 107120. |
| 6 | ABELE E, HOLLAND L. Image-based movement analysis of bearing cages of cylindrical hybrid roller bearings[J]. Journal of Tribology, 2017, 139(6): 061101. |
| 7 | ABELE E, HOLLAND L, NEHRBASS A. Image acquisition and image processing algorithms for movement analysis of bearing cages[J]. Journal of Tribology, 2016, 138(2): 021105. |
| 8 | GAO S, HAN Q K, ZHOU N N, et al. Experimental and theoretical approaches for determining cage motion dynamic characteristics of angular contact ball bearings considering whirling and overall skidding behaviors[J]. Mechanical Systems and Signal Processing, 2022, 168: 108704. |
| 9 | YANG Z H, NIU X L, LI C H. Experimental study on cage dynamic behavior of long-life high-precision ball bearing with trajectory deviation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5011511. |
| 10 | WEN B G, REN H J, ZHANG H, et al. Experimental investigation of cage motions in an angular contact ball bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231(8): 1041-1055. |
| 11 | GAO S, HAN Q K, PENNACCHI P, et al. Dynamic, thermal, and vibrational analysis of ball bearings with over-skidding behavior[J]. Friction, 2023, 11(4): 580-601. |
| 12 | LIU X H, DENG S E, TENG H F. Dynamic stability analysis of cages in high-speed oil-lubricated angular contact ball bearings[J]. Transactions of Tianjin University, 2011, 17(1): 20-27. |
| 13 | 陈书恒, 李猛, 刘恒, 等. 采用频谱细化的超声法在线测量滚动轴承保持架转速[J]. 西安交通大学学报, 2020, 54(7): 139-145. |
| CHEN S H, LI M, LIU H, et al. On-line rotational speed measurement of rolling bearing cage based on ultrasonic measurement with spectrum refinement[J]. Journal of Xi’an Jiaotong University, 2020, 54(7): 139-145 (in Chinese). | |
| 14 | 温保岗. 角接触球轴承保持架动力学特性及其试验研究[D]. 大连: 大连理工大学, 2017. |
| WEN B G. Dynamic characteristics and experimental study of angular contact ball bearing cage[D]. Dalian: Dalian University of Technology, 2017 (in Chinese). | |
| 15 | CUI Y C, DENG S E, DENG K W, et al. Experimental study on impact of roller imbalance on cage stability[J]. Chinese Journal of Aeronautics, 2021, 34(10): 248-264. |
| 16 | GAO S, CHATTERTON S, PENNACCHI P, et al. Skidding and cage whirling of angular contact ball bearings: Kinematic-Hertzian contact-thermal-elasto-hydrodynamic model with thermal expansion and experimental validation[J]. Mechanical Systems and Signal Processing, 2022, 166: 108427. |
| 17 | GAO P, HOU L, CHEN Y S. Dynamic load and thermal coupled analysis for the inter-shaft bearing in a dual-rotor system[J]. Meccanica, 2021, 56(11): 2691-2706. |
| 18 | 高朋. 双转子-中介轴承系统非线性动力学与热行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
| GAO P. Study on nonlinear dynamics and thermal behavior of double rotor-intermediate bearing system[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). | |
| 19 | 田晶, 艾辛平, 刘丽丽, 等. 中介轴承复合故障动力学建模与振动特征分析[J]. 振动与冲击, 2022, 41(22): 144-151. |
| TIAN J, AI X P, LIU L L, et al. Dynamic modeling and vibration characteristic analysis of the inter-shaft bearing’s multiple point fault[J]. Journal of Vibration and Shock, 2022, 41(22): 144-151 (in Chinese). | |
| 20 | 王杰, 左彦飞, 江志农, 等. 带中介轴承的双转子系统振动耦合作用评估[J]. 航空学报, 2021, 42(6): 224065. |
| WANG J, ZUO Y F, JIANG Z N, et al. Evaluation of vibration coupling effect of dual-rotor system with intershaft bearing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 224065 (in Chinese). | |
| 21 | WANG Z L, LIN L, CHEN J, et al. Triboelectric nanogenerator[M]. Cham: Springer, 2016. |
| 22 | FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334. |
| 23 | LIN H B, LIU Y, CHEN S L, et al. Seesaw structured triboelectric nanogenerator with enhanced output performance and its applications in self-powered motion sensing[J]. Nano Energy, 2019, 65: 103944. |
| 24 | XIE Y N, WANG S H, NIU S M, et al. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency[J]. Advanced Materials, 2014, 26(38): 6599-6607. |
| 25 | LI H, WEN J, OU Z Q, et al. Leaf-like TENGs for harvesting gentle wind energy at an air velocity as low as 0.2ms-1 [J]. Advanced Functional Materials, 2023, 33(11): 2212207. |
| 26 | XU S X, LIU G L, WANG J B, et al. Interaction between water wave and geometrical structures of floating triboelectric nanogenerators[J]. Advanced Energy Materials, 2022, 12(3): 2103408. |
| 27 | XU Q H, FANG Y S, JING Q S, et al. A portable triboelectric spirometer for wireless pulmonary function monitoring[J]. Biosensors & Bioelectronics, 2021, 187: 113329. |
| 28 | AHMED A, SAADATNIA Z, HASSAN I, et al. Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy[J]. Advanced Energy Materials, 2017, 7(7): 1601705. |
| 29 | GAO Q, CHENG T H, WANG Z L. Triboelectric mechanical sensors—Progress and prospects[J]. Extreme Mechanics Letters, 2021, 42: 101100. |
| 30 | LI S M, WANG J, PENG W B, et al. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators[J]. Advanced Energy Materials, 2017, 7(13): 1602832. |
| 31 | GUO H Y, PU X J, CHEN J, et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids[J]. Science Robotics, 2018, 3(20): eaat2516. |
| 32 | WANG B B, GAO M, FU X F, et al. 3D printing deep-trap hierarchical architecture-based non-contact sensor for multi-direction motion monitoring[J]. Nano Energy, 2023, 107: 108135. |
| 33 | XIE J W, ZHAO Y Z, ZHU D Z, et al. A machine learning-combined flexible sensor for tactile detection and voice recognition[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12551-12559. |
| 34 | ZHAO H F, XU M Y, SHU M R, et al. Underwater wireless communication via TENG-generated Maxwell’s displacement current[J]. Nature Communications, 2022, 13(1): 3325. |
| 35 | WU H, WANG J Y, WU Z Y, et al. Multi-parameter optimized triboelectric nanogenerator based self-powered sensor network for broadband aeolian vibration online-monitoring of transmission lines[J]. Advanced Energy Materials, 2022, 12(13): 2103654. |
| 36 | MENG X S, LI H Y, ZHU G, et al. Fully enclosed bearing-structured self-powered rotation sensor based on electrification at rolling interfaces for multi-tasking motion measurement[J]. Nano Energy, 2015, 12: 606-611. |
| 37 | LI X H, HAN C B, JIANG T, et al. A ball-bearing structured triboelectric nanogenerator for nondestructive damage and rotating speed measurement[J]. Nanotechnology, 2016, 27(8): 085401. |
| 38 | HAN Q K, DING Z, QIN Z Y, et al. A triboelectric rolling ball bearing with self-powering and self-sensing capabilities[J]. Nano Energy, 2020, 67: 104277. |
| 39 | XIE Z J, WANG Y, WU R S, et al. A high-speed and long-life triboelectric sensor with charge supplement for monitoring the speed and skidding of rolling bearing[J]. Nano Energy, 2022, 92: 106747. |
| 40 | LI Z H, WANG X L, FU T, et al. Research on nano-film composite lubricated triboelectric speed sensor for bearing skidding monitoring[J]. Nano Energy, 2023, 113: 108591. |
| 41 | LONG L, LIU W L, WANG Z, et al. High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting[J]. Nature Communications, 2021, 12: 4689. |
| 42 | XIE Z J, DONG J W, LI Y K, et al. Triboelectric rotational speed sensor integrated into a bearing: A solid step to industrial application[J]. Extreme Mechanics Letters, 2020, 34: 100595. |
| 43 | GAO S, HAN Q K, ZHOU N N, et al. Dynamic and wear characteristics of self-lubricating bearing cage: Effects of cage pocket shape[J]. Nonlinear Dynamics, 2022, 110(1): 177-200. |
| [1] | Yiwei HUANG, Yibin GENG, Tianhe GAO, Xuanwei HU, Yuan WANG, Hongyan MA, Kuo TIAN. Digital twin driven high precision reconstruction method for full-field deformation of structure [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 530967-530967. |
| [2] | Dingqiang DAI, Xuan ZHOU, Leiting DONG, Xiasheng SUN. Research progress and prospects of digital engineering and digital twin in field of aeronautical fatigue and structural integrity [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531022-531022. |
| [3] | Shangyu LI, Hang FENG, Junquan CHEN, Bin CHEN, Dan MEI. A design architecture and conceptual modeling approach for digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531118-531118. |
| [4] | Junqi LEI, Yuehua CHENG, Bin JIANG, Cheng XU, Guili XU, Tianyu SUN. Digital-twin’s modelling and dynamic adjustment mechanism of rudder-loop-system under fault conditions [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531273-531273. |
| [5] | Liang CHEN, Lei HUANG, Yuxuan GU, Cong GUO, Kexin LIN, Yu GUAN, Jian SONG. Twinning technology of key part load based on flight parameters [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531292-531292. |
| [6] | Yuxuan GU, Cong GUO, Lei HUANG, Yifei DONG, Hongda DONG, Zhilun DENG. Refined management of fleet life driven by digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531290-531290. |
| [7] | Yinxuan ZHANG, Qi ZHANG, Zhenyong XU, Linshu MENG. Predicting method of aircraft mechanical response based on residual neural networks [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531295-531295. |
| [8] | Ruoyao XIAO, Lianyu ZHENG, Jian ZHOU, Siru ZHAO, Jieru ZHANG, Yuwu CHEN. Online optimization method for positioning accuracy in cylindrical components aligning based on digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531978-531978. |
| [9] | Jialiang HU, Jiangpeng WU, Sixu HUO, Yidi GAO, Hua ZHENG. Modal parameter estimation based on reconstruction of digital twin sweep data in flutter flight test [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531602-531602. |
| [10] | Pengfei WANG, Lifang ZENG, Xueming SHAO, Jun LI. Multi-source data fusion modeling method for aerodynamic load of aircraft wing based on pre-training and fine-tuning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532297-532297. |
| [11] | Yifei WANG, Geyong CAO, Yang CAO, Xiaojun WANG. Uncertainty technologies in aircraft digital strength twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532408-532408. |
| [12] | Liang CHEN, Fanxing MENG, Chengbo WANG, Yinxuan ZHANG, Linshu MENG. Development and application of digital twins technology in aircraft strength design [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532252-532252. |
| [13] | Ran ZHUO, Chuliang YAN. A key component in digital twin of aircraft structures: Multi-dimensional flight parameter measurements [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532375-532375. |
| [14] | Lin LIN, Shiwei SUO, Dan LIU, Yinxuan ZHANG, Lingyu YUE, Sihao ZHANG, Yikun LIU, Song FU. A deep feature fusion network based on multi-scale kernel construction for filling wing stress field data [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532343-532343. |
| [15] | Jie BIAN, Siji WANG, Feichun LIU. Research progress on design and experiment of squirrel-cage elastic supports in aircraft engines [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(17): 231571-231571. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

