Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (21): 629385.doi: 10.7527/S1000-6893.2023.29385
• Special Topic: Aero-engine Digital Twin • Previous Articles
Chunhua LI, Jianzhong SUN(), Jilong LU
Received:
2023-07-29
Revised:
2023-08-31
Accepted:
2023-10-09
Online:
2023-11-09
Published:
2023-11-07
Contact:
Jianzhong SUN
E-mail:sunjianzhong@nuaa.edu.cn
Supported by:
CLC Number:
Chunhua LI, Jianzhong SUN, Jilong LU. Maintenance-oriented approach for HPT blade life digital twin modeling[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 629385.
1 | GIESECKE D, FRIEDRICHS J, KENULL T, et al. A method for forecasting the condition of HPT NGVs by using Bayesian belief networks and a statistical approach[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2014: V07BT30A002. |
2 | GIESECKE D, WEHKING M, FRIEDRICHS J, et al. A method for forecasting the condition of several HPT parts by using Bayesian belief networks[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2015: V07AT29A003. |
3 | WADE R A. A need-focused approach to air force engine health management research[C]∥ 2005 IEEE Aerospace Conference. Piscataway: IEEE Press, 2005: 1-13. |
4 | XIA T B, DONG Y F, XIAO L, et al. Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering & System Safety, 2018, 178: 255-268. |
5 | 郑新前, 王钧莹, 黄维娜,等. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 027099. |
ZHENG X Q, WANG J Y, HUANG W N, et al. Uncertainty-based design system for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 027099 (in Chinese). | |
6 | GRELOTTI R, GLANOVSKY J. Usage-based life prediction and fleet management for gas turbine engines[C]∥ 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010: 2972. |
7 | ARAHCHIGE B, PERINPANAYAGAM S. Uncertainty quantification in aircraft gas turbine engines[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(9): 1628-1638. |
8 | WANG Y C, TAO F, ZHANG M, et al. Digital twin enhanced fault prediction for the autoclave with insufficient data[J]. Journal of Manufacturing Systems, 2021, 60: 350-359. |
9 | KRAFT J, KUNTZAGK S. Engine fleet-management: The use of digital twins from an MRO perspective[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2017: V001T01A007. |
10 | ZACCARIA V, STENFELT M, ASLANIDOU I, et al. Fleet monitoring and diagnostics framework based on digital twin of aeroengines[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2018:V006T05A021. |
11 | DAWES B, HUNT M, MEAH N, et al. Physics-based simulation in support of a through-life gas turbine service business model[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2019: V001T01A015. |
12 | KRISHNABABU S, VALERO O, WELLS R. AI assisted high fidelity multi-physics digital twin of industrial gas turbines[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2021: V02DT36A007. |
13 | SUN J Z, YAN Z C, HAN Y, et al. Deep learning framework for gas turbine performance digital twin and degradation prognostics from airline operator perspective[J]. Reliability Engineering & System Safety, 2023, 238: 109404. |
14 | ABU A O, ESHATI S, LASKARIDIS P, et al. Aero-engine turbine blade life assessment using the Neu/Sehitoglu damage model[J]. International Journal of Fatigue, 2014, 61: 160-169. |
15 | STAROSELSKY A, MARTIN T J, CASSENTI B. Transient thermal analysis and viscoplastic damage model for life prediction of turbine components[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(4): 042501. |
16 | CAI L, HOU Y, LI F, et al. Impacts of startup, shutdown and load variation on transient temperature and thermal stress fields within blades of gas turbines[J]. Journal of Thermal Science, 2022, 31(3): 727-740. |
17 | HULS R A, LAMMEN W, MAAS R, et al. A quick prediction model for prognostic health management of an engine turbine blade[C]∥International Scientific Conference Modern Safety Technologies in Transportation. Piscataway: IEEE Press, 2015: 133-138. |
18 | VAN ENKHUIZEN M J, DRESBACH C, REH S, et al. Efficient lifetime prediction of high-pressure turbine blades in real life conditions[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2017: V07AT31A002. |
19 | SONG L K, BAI G C, FEI C W, et al. Reliability-based fatigue life prediction for complex structure with time-varying surrogate modeling[J]. Advances in Materials Science and Engineering, 2018, 2018: 1-16. |
20 | SPODNIAK M, SEMRÁD K, DRAGANOVÁ K. Turbine blade temperature field prediction using the numerical methods[J]. Applied Sciences, 2021, 11(6): 2870. |
21 | CARTER J A, GOSWAMI T. Probabilistic risk assessment for life extension of turbine engine rotors[J]. Metals, 2022, 12(8): 1269. |
22 | RÍOS J, STAUDTER G, WEBER M, et al. Uncertainty of data and the digital twin: A review[J]. International Journal of Product Lifecycle Management, 2020, 12(4): 329-358. |
23 | SCHNELL R, LENGYEL-KAMPMANN T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J]. Journal of Turbomachinery, 2014, 136(9): 091005. |
24 | LAMB C T, DARMOFAL D L. Performance-based geometric tolerancing of compressor blades[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2004: 203-210. |
25 | SHI W, LI W, SHI B, et al. Uncertainty quantification of conjugate heat transfer of a cooled turbine vane: Roughness effect[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2017: V05AT10A004. |
26 | LIU X J, TANG H L, ZHANG X, et al. Gaussian process model-based performance uncertainty quantification of a typical turboshaft engine[J]. Applied Sciences, 2021, 11(18): 8333. |
27 | LIU H, SUN J Z, LEI S Y, et al. In-service aircraft engines turbine blades life prediction based on multi-modal operation and maintenance data[J]. Propulsion and Power Research, 2021, 10(4): 360-373. |
28 | PILLAI P, KAUSHIK A, BHAVIKATTI S, et al. A hybrid approach for fusing physics and data for failure prediction[J]. International Journal of Prognostics and Health Management, 2016, 7(4): 2463. |
29 | HUANG Y F, TAO J, SUN G, et al. A novel digital twin approach based on deep multimodal information fusion for aero-engine fault diagnosis[J]. Energy, 2023, 270: 126894. |
30 | ORLANDE H R B. Inverse problems in heat transfer: New trends on solution methodologies and applications[J]. Journal of Heat Transfer, 2012, 134(3): 031011. |
31 | CHAO M A, LILLEY D S, MATHÉ P, et al. Calibration and uncertainty quantification of gas turbine performance models[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2015: V07AT29A001. |
32 | WHITE A, MAHADEVAN S, GREY Z, et al. Efficient calibration of a turbine disc heat transfer model under uncertainty[J]. Journal of Thermophysics and Heat Transfer, 2020, 35(2): 234-244. |
33 | NANNAPANENI S, MAHADEVAN S. Reliability analysis under epistemic uncertainty[J]. Reliability Engineering & System Safety, 2016, 155: 9-20. |
34 | ABSI G N, MAHADEVAN S. Multi-fidelity approach to dynamics model calibration[J]. Mechanical Systems and Signal Processing, 2016, 68: 189-206. |
35 | O’HAGAN A. Bayesian analysis of computer code outputs: A tutorial[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1290-1300. |
36 | KENNEDY M C, O’HAGAN A. Bayesian calibration of computer models[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2001, 63(3): 425-464. |
37 | LIU H, SUN J Z, LEI S Y. In-service reliability assessment of turbine blade thermal barrier coatings based on a novel cumulative damage index model[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(11): 111005. |
38 | 雷世英, 孙见忠, 刘赫. 涡轮叶片累积损伤指数模型及服役可靠性评估[J]. 航空学报, 2022, 43(3): 225064. |
LEI S Y, SUN J Z, LIU H. Cumulative damage index model and service reliability evaluation of turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 225064 (in Chinese). | |
39 | 《中国航空材料手册》编辑委员会. 中国航空材料手册[M]. 北京: 中国标准出版社, 2001: 812-818. |
Editorial Committee of《China Aeronautical Materials Manual》. China aeronautical materials manual[M]. Beijing: Standards Press of China, 2001: 812-818 (in Chinese). | |
40 | MONTOMOLI F, CARNEVALE M, D’AMMARO A, et al. Uncertainty quantification in computational fluid dynamics and aircraft engines[M]. Cham: Springer International Publishing, 2015. |
41 | 何磊, 黄启鹤, 赵连会, 等. 重型燃气轮机透平叶片表面粗糙度对换热的影响[J]. 动力工程学报, 2019, 39(9): 711-716, 746. |
HE L, HUANG Q H, ZHAO L H, et al. Effect of surface roughness on heat transfer characteristics of heavy duty gas turbine airfoils[J]. Journal of Chinese Society of Power Engineering, 2019, 39(9): 711-716, 746 (in Chinese). | |
42 | 董平, 郭兆元, 王强, 等. 进口温度不均匀对气冷涡轮叶片传热的影响[J]. 工程热物理学报, 2010, 31(7): 1109-1112. |
DONG P, GUO Z Y, WANG Q, et al. Effects of non-uniform inlet temperature distribution on air cooled gas turbine vane[J]. Journal of Engineering Thermophysics, 2010, 31(7): 1109-1112 (in Chinese). | |
43 | GLASENAPP T, PUETZ F, SCHULZ A, et al. Assessment of real turbine blade roughness parameters for the design of a film cooling test rig[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2017: V05AT13A001. |
44 | WANG J Y, ZHENG X Q. Review of geometric uncertainty quantification in gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(7): 070801. |
45 | HUANG M, LI Z G, LI J, et al. Efficient uncertainty quantification and sensitivity analysis on the aerothermal performance of turbine blade squealer tip[J]. Journal of Turbomachinery, 2022, 144(5): 051014. |
46 | SAHA S K, MATSAGAR V, CHAKRABORTY S. Uncertainty quantification and seismic fragility of base-isolated liquid storage tanks using response surface models[J]. Probabilistic Engineering Mechanics, 2016, 43: 20-35. |
47 | VAN RAVENZWAAIJ D, CASSEY P, BROWN S D. A simple introduction to Markov chain Monte–Carlo sampling[J]. Psychonomic Bulletin & Review, 2018, 25(1): 143-154. |
48 | JOHNSON A A, JONES G L, NEATH R C. Component-wise Markov chain Monte Carlo: Uniform and geometric ergodicity under mixing and composition[J]. Statistical Science, 2013, 28(3): 360-375. |
49 | HARRISON G F, HOMEWOOD T. The application of the Graham and Walles creep equation to aeroengine superalloys[J]. The Journal of Strain Analysis for Engineering Design, 1994, 29(3): 177-184. |
50 | 雷世英. 服役条件下多模态数据驱动的典型关重件寿命预测模型研究[D]. 南京: 南京航空航天大学, 2021: 57-61. |
LEI S Y. Research on life prediction model of typical key and important components driven by multimodal data under service conditions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 57-61 (in Chinese). | |
51 | NEU R W, SEHITOGLU H. Thermomechanical fatigue, oxidation, and creep: Part II. Life prediction[J]. Metallurgical Transactions A, 1989, 20(9): 1769-1783. |
[1] | Chunhui ZHAO, Anmeng LIU, Yang LYU, Quan PAN. A survey of resilient self-localization for UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28839-028839. |
[2] | Tao WANG, Xuefeng GAO, Jinping ZHU, Song DONG, Lianjun SUN, Kan ZHENG. Chatter online monitoring of robotic longitudinal⁃torsional ultrasonic edge trimming [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 262-272. |
[3] | Chao WEN, Wenhan DONG, XIE Wujie, Ming CAI, Ri LIU. Distributed cooperative area search method for UAV swarms based on revisit mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 327561-327561. |
[4] | LIN Jing, ZHANG Boyao, ZHANG Dayi, CHEN Min. Research status and prospect of fault diagnosis for gas turbine aeroengine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 626565-626565. |
[5] | YE Zipeng, ZHOU Qingrui, WANG Hui. Distributed autonomous relative navigation method for spacecraft formation near solar L2 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324145-324145. |
[6] | YIN Dongliang, HUANG Xiaoying, WU Yanjie, HE Youchen, XIE Jingwei. Target recognition decision method based on cloud model and improved D-S evidence theory [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 324768-324768. |
[7] | WANG Wei, XING Chaoyang, FENG Wenshuai. State of the art and perspectives of autonomous navigation technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(11): 525049-525049. |
[8] | LIANG Shuai, YANG Lin, YANG Zhaoxu, XU Bin. Kalman filter based T-S fuzzy control for morphing aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724274-724274. |
[9] | WANG Cong, WANG Haipeng, XIONG Wei, HE You. Data association algorithm based on least square fitting [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(5): 1603-1613. |
[10] | YI Xiao, HAN Jianyue, ZHANG Huaiwei, GUAN Xin. Asynchronous track-to-track association algorithm based on similarity degree of interval-real sequence [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(4): 1212-1220. |
[11] | WANG Yu, ZHANG Weiguo, FU Li, HUANG Degang, LI Yong. Dynamic situation assessment method of aerial warfare based on improved evidence network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(12): 3896-3909. |
[12] | LI Yebo, LI Qiuhong, HUANG Xianghua, ZHAO Yongping. Research on Gas Fault Fusion Diagnosis of Aero-engine Component [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(6): 1612-1622. |
[13] | WANG Guoqing, GU Qingfan, WANG Miao, ZHANG Lihua. Research on the Architecture Technology for New Generation Integrated Avionics System [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(6): 1473-1486. |
[14] | HU Zhou, WANG Zhisheng, WANG Congqing. Decoupling Control Algorithm of Helicopter with Input Saturation Based on Information Fusion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(5): 1394-1403. |
[15] | LI Borui, MU Chundi, BAI Tianming, LIU Zhijuan. A Hybrid Approach for Extended Object Tracking [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(5): 1336-1346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341