Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (24): 231863.doi: 10.7527/S1000-6893.2025.31863
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles
Weizhen CHENG(
), Zefeng WANG, Lisong GENG, Jiahong ZHENG, Shuaike JIAO, Kang LI
Received:2025-02-10
Revised:2025-02-20
Accepted:2025-03-14
Online:2025-03-28
Published:2025-10-30
Contact:
Weizhen CHENG
E-mail:chengwz1972@qq.com
Supported by:CLC Number:
Weizhen CHENG, Zefeng WANG, Lisong GENG, Jiahong ZHENG, Shuaike JIAO, Kang LI. Flight test measurement for structural load of rotor blade based on fiber Bragg grating[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(24): 231863.
Table 1
Relative error of normalized blade section loads
| 挥舞弯矩 | 摆振弯矩 | ||||
|---|---|---|---|---|---|
| 实际值 | 计算值 | 相对误差/% | 实际值 | 计算值 | 相对误差/% |
| 0.063 3 | 0.064 6 | 2.09 | 0.109 6 | 0.112 4 | 2.58 |
| 0.126 6 | 0.127 8 | 0.98 | 0.219 2 | 0.223 2 | 1.79 |
| 0.189 5 | 0.193 8 | 2.28 | 0.328 2 | 0.329 1 | 0.25 |
| 0.252 7 | 0.259 8 | 2.84 | 0.437 6 | 0.443 2 | 1.28 |
| 0.315 7 | 0.323 0 | 2.33 | 0.546 8 | 0.553 9 | 1.31 |
| 0.252 7 | 0.258 4 | 2.29 | 0.437 6 | 0.449 8 | 2.77 |
| 0.189 5 | 0.192 4 | 1.54 | 0.328 2 | 0.333 8 | 1.71 |
| 0.126 6 | 0.129 2 | 2.09 | 0.219 2 | 0.224 9 | 2.58 |
| 0.063 3 | 0.061 8 | 2.35 | 0.109 6 | 0.113 7 | 3.76 |
| [1] | 廖延彪, 黎敏, 张敏, 等. 光纤传感技术与应用[M]. 北京: 清华大学出版社, 2009. |
| LIAO Y B, LI M, ZHANG M, et al. Optical fiber sensing techniques and applications[M]. Beijing: Tsinghua University Press, 2009 (in Chinese). | |
| [2] | 薛景锋, 宋昊, 王文娟. 光纤光栅在航空结构健康监测中的应用前景[J]. 航空制造技术, 2012(22): 45-49. |
| XUE J F, SONG H, WANG W J. Application of optical fiber grating in health monitoring for aircraft structure[J]. Aeronautical Manufacturing Technology, 2012(22): 45-49 (in Chinese). | |
| [3] | DI SANTE R. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications[J]. Sensors, 2015, 15(8): 18666-18713. |
| [4] | IELE A, LEONE M, CONSALES M, et al. Load monitoring of aircraft landing gears using fiber optic sensors[J]. Sensors and Actuators A: Physical, 2018, 281: 31-41. |
| [5] | IADICICCO A, NATALE D, DI PALMA P, et al. Strain monitoring of a composite drag strut in aircraft landing gear by fiber Bragg grating sensors[J]. Sensors, 2019, 19(10): 2239. |
| [6] | ŚWIĘCH Ł. Calibration of a load measurement system for an unmanned aircraft composite wing based on fibre Bragg gratings and electrical strain gauges[J]. Aerospace, 2020, 7(3): 27. |
| [7] | 褚园园, 吴越, 黄鹏宇, 等. 基于FBG的飞机起落架载荷测试技术研究[J]. 半导体光电, 2022, 43(1): 182-187. |
| CHU Y Y, WU Y, HUANG P Y, et al. Research on load testing technology of aircraft landing gear based on FBG[J]. Semiconductor Optoelectronics, 2022, 43(1): 182-187 (in Chinese). | |
| [8] | 鹿利单, 闫光, 刘锋, 等. 基于预拉伸基片式FBG的工字梁载荷测试[J]. 压电与声光, 2017, 39(4): 619-623. |
| LU L D, YAN G, LIU F, et al. Joist load test based on pre-stretching substrate FBG sensor[J]. Piezoelectrics & Acoustooptics, 2017, 39(4): 619-623 (in Chinese). | |
| [9] | 黄勇. 基于光纤传感的襟翼操纵载荷试飞技术[J]. 航空学报, 2020, 41(4): 127-133. |
| HUANG Y. Flight test technic for flap operation load with optical fiber sensing[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 127-133 (in Chinese). | |
| [10] | 鲁明宇, 马超, 李翔宇, 等. 飞机作动器连杆光纤光栅载荷校准方法[J]. 数据采集与处理, 2020, 35(2): 270-277. |
| LU M Y, MA C, LI X Y, et al. Load calibration method of actuator connecting panels for aircraft based on fiber Bragg grating sensors[J]. Journal of Data Acquisition and Processing, 2020, 35(2): 270-277 (in Chinese). | |
| [11] | 童杏林, 何为, 张翠, 等. 光纤光栅与光纤法珀传感器在航空航天领域的研究与应用进展[J]. 激光杂志, 2018, 39(7): 1-7. |
| TONG X L, HE W, ZHANG C, et al. Research and application progress of fiber Bragg grating and Fabry-Perot sensors in the field of aeronautics and astronautics[J]. Laser Journal, 2018, 39(7): 1-7 (in Chinese). | |
| [12] | 刘凯伟, 刘琦牮, 李骏, 等. 基于FBG传感器和卷积神经网络的复合材料结构载荷识别研究[J]. 材料导报, 2023, 37(1): 49-55. |
| LIU K W, LIU Q J, LI J, et al. Load identification of composite structural based on FBG sensor and convolutional neural network[J]. Materials Reports, 2023, 37(1): 49-55 (in Chinese). | |
| [13] | 黄鹏宇, 陈诗, 刘元凤, 等. 基于FBG的某舰载机前起落架载荷监测技术研究[J]. 激光杂志, 2023, 44(7): 68-75. |
| HUANG P Y, CHEN S, LIU Y F, et al. Research on FBG-based front landing gear load monitoring technology of a carrier aircraft[J]. Laser Journal, 2023, 44(7): 68-75 (in Chinese). | |
| [14] | HEGDE G, ASOKAN S, HEGDE G. Fiber Bragg grating sensors for aerospace applications: A review[J]. ISSS Journal of Micro and Smart Systems, 2022, 11(1): 257-275. |
| [15] | SHOI O, PETER B, OVIDIU N. Realtime health monitoring of composite structures using FBG sensors[J]. IFAC-PapersOnLine, 2022, 55(19): 157-162. |
| [16] | NICOLAS M J, SULLIVAN R W, RICHARDS W L. Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing[J]. Aerospace, 2016, 3(3): 18. |
| [17] | 蒋熙馨. 旋转叶片动应变FBG分布式检测及振动估计研究[D]. 武汉: 武汉理工大学, 2014. |
| JIANG X X. Rotating blade’s dynamic strain distributed measurement and vibration estimation research based on FBG[D]. Wuhan: Wuhan University of Technology, 2014 (in Chinese). | |
| [18] | LEE J M, HWANG Y. A novel online rotor condition monitoring system using fiber Bragg grating (FBG) sensors and a rotary optical coupler[J]. Measurement Science and Technology, 2008, 19(6): 065303. |
| [19] | WEN B R, TIAN X L, JIANG Z H, et al. Monitoring blade loads for a floating wind turbine in wave basin model tests using Fiber Bragg Grating sensors: a feasibility study[J]. Marine Structures, 2020, 71: 102729. |
| [20] | ALIAN H, KONFORTY S, BEN-SIMON U, et al. Bearing fault detection and fault size estimation using fiber-optic sensors[J]. Mechanical Systems and Signal Processing, 2019, 120: 392-407. |
| [21] | KIM K, LEE J M, HWANG Y H. Torsion measurement using fiber Bragg grating sensors and a rotary optical coupler[C]∥Fifteenth International Congress on Sound and Vibration.Auburn: International Institute of Acoustics and Vibration (IIAV), 2008: 2303-2310. |
| [22] | 吴慧峰, 董瑞. 基于神经网络的直升机旋翼桨叶载荷模型研究[J]. 桂林航天工业学院学报, 2022, 27(3): 328-334. |
| WU H F, DONG R. Study on load model of helicopter rotor blade based on neural network[J]. Journal of Guilin University of Aerospace Technology, 2022, 27(3): 328-334 (in Chinese). | |
| [23] | 梁磊, 朱振华, 王慧, 等. 基于光纤光栅的直升机桨叶载荷测试技术研究[J]. 光电子·激光, 2019, 30(12): 1280-1285. |
| LIANG L, ZHU Z H, WANG H, et al. Research on testing technology of helicopter blade load based on FBG[J]. Journal of Optoelectronics·Laser, 2019, 30(12): 1280-1285 (in Chinese). | |
| [24] | 陈文, 夏品奇. 采用光纤传感测量的直升机旋翼桨叶分布载荷识别[J]. 振动工程学报, 2009, 22(2): 183-187. |
| CHEN W, XIA P Q. Identification of helicopter rotor blade distributed loads by using fiber optic sensor measurement[J]. Journal of Vibration Engineering, 2009, 22(2): 183-187 (in Chinese). | |
| [25] | LUCZAK M, PEETERS B, DZIEDZIECH K. Static and dynamic testing of the full scale helicopter rotor blades[C]∥International Conference on Noise and Vibration Engineering 2010. New York:Curran Associates, Inc., 2010: 2131-2143. |
| [26] | NISHIYAMA M, IGAWA H, KASAI T, et al. Distributed strain measurement based on long-gauge FBG and delayed transmission/reflection ratiometric reflectometry for dynamic structural deformation monitoring[J]. Applied Optics, 2015, 54(5): 1191-1197. |
| [27] | SERAFINI J, BERNARDINI G, MATTIONI L, et al. Non-invasive dynamic measurement of helicopter blades[J]. Journal of Physics: Conference Series, 2017, 882(1): 012014. |
| [28] | KRESSEL I, BALTER J, EVENHAIM S, et al. Health and usage monitoring of aging helicopter structure using fiber Bragg grating sensor net[C]∥ 51st Israel Annual Conference on Aerospace Science. Haifa: Technion Israel Institute of Technology, 2011:144-145. |
| [29] | SUESSE S. Dynamic rotor blade displacement tracking with fiber-optical sensors for a health and usage monitoring system[C]∥18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017. |
| [30] | SHAPIRA O, SHEINKMAN S, GLAM B, et al. Flight validation of a structural health monitoring system for CH-53 helicopter main rotor gearbox support[C]∥57th Israel Annual Conference on Aerospace Science. Haifa: Technion Israel Institute of Technology, 2017: 1-8. |
| [31] | 程卫真. 共轴双旋翼桨叶结构载荷试飞研究[J]. 应用力学学报, 2019, 36(5): 1005-1011, 1253-1254. |
| CHENG W Z. Flight test technique for twin-rotor blade structural load of a coaxial helicopter[J]. Chinese Journal of Applied Mechanics, 2019, 36(5): 1005-1011, 1253-1254 (in Chinese). |
| [1] | Lixiong ZHENG, Zhe CHEN, Xin WANG, Qijun ZHAO. Prediction of whirl flutter boundary for tiltrotor aircraft based on BPNN with adaptive data [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(S1): 732159-732159. |
| [2] | Xin WANG, Xiayang ZHANG, Lixiong ZHENG, Jinwu XIANG. High-efficiency and high-precision aeroelastic full coupling method of rotor [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(S1): 732161-732161. |
| [3] | Wangqing ZHU, Chenkai CAO, Guoqing ZHAO, Qinghua ZHU, Haoyu HU. Aerodynamic interference of scissor tail rotor and influence of unconventional layout parameters [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(S1): 732181-732181. |
| [4] | Jiong HE, Binwu REN, Siliang DU, Yousong XU, Bo WANG. Adaptive attitude control for tilt-quadrotor UAV based on ADRC-RBF [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(S1): 732189-732189. |
| [5] | Xiayang ZHANG, Bin LUO, Xi CHEN, Tao YANG. Optimization design of high-efficiency and low-noise rotor layout for quad-tiltrotor aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(S1): 732183-732183. |
| [6] | Tao ZHANG, Pan LI, Zixu WANG, Zhenhua ZHU. Design of reward functions for helicopter attitude control in reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(S1): 732184-732184. |
| [7] | Zhicheng LIU, Feng LIAO, Chenkai CAO, Wangqing ZHU, Guoqing ZHAO, Qijun ZHAO, Haoyu HU. Aerodynamic influence study of ducted tail rotor geometry and configuration parameters [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(S1): 732224-732224. |
| [8] | Zhihao HE, Peng KOU, Bohua LIANG, Deliang LIANG. Powered yaw predictive control of distributed electric propulsion aircraft considering slipstream effects [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(S1): 732305-732305. |
| [9] | Jianfeng TAN, Yuze YAN, Weiguo ZHANG, Yakui LIU, Tianshuang SHAO. Analysis method of helicopter blade erosion in brownout condition [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 431012-431012. |
| [10] | Qing WANG, Fengqi ZHENG, Di DING, Xi YUE. Aerodynamic coefficient identification method based on noise statistics estimation [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 130920-130920. |
| [11] | Dongfei ZHANG, Junhui GAO. High-precision numerical simulation of fan rotor-stator interaction pure tone [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 130884-130884. |
| [12] | Yifan YANG, Xiao WANG. Enhanced hybrid vortex particle method for aerodynamic analysis of tiltrotor rotor/wing interactions [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 131040-131040. |
| [13] | Zhiqiang WAN, Shanshan ZHANG, Xiaozhe WANG, Liang MA, Ao XU, Zhigang WU, Chao YANG. Maneuver load analysis and alleviation technology of flexible aircraft: Review [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 30279-030279. |
| [14] | Yong LIANG, Weiguo ZHANG, Binghui CHE, Honggang YUAN, Chunhua WEI, Ningmeng YANG. Wind tunnel tests of aeroacoustic characteristic for helicopter aircraft model [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(24): 132072-132072. |
| [15] | Yun ZHANG, Chenguang LIU, Yukun ZHANG, Peng LI. Crack identification of aeroengine compressor blades based on blade tip timing [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(23): 231823-231823. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

