Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (17): 530304.doi: 10.7527/S1000-6893.2024.30304
Previous Articles Next Articles
Received:
2024-02-20
Revised:
2024-02-26
Accepted:
2024-02-29
Online:
2024-09-15
Published:
2024-03-11
Contact:
Haifeng WANG
E-mail:wanghf611@163.com
CLC Number:
Haifeng WANG. Development of high performance collaborative combat UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530304.
1 | 史文卿, 王海峰, 陈海昕. 战斗机—无人机编组协同系统需求捕获与验证[J]. 系统工程与电子技术, 2023, 45(1): 108-118. |
SHI W Q, WANG H F, CHEN H X. Fighter-drone teaming system requirements elicitation and verification[J]. Systems Engineering and Electronics, 2023, 45(1): 108-118 (in Chinese). | |
2 | GUNZINGER M, REHBERG C, COHN J. An air force for an era of great power competition[R]. Washington, D. C.: Center for Strategic and Budgetary Assessments, 2019. |
3 | Министерство O, Ф Российской. Концепция применения комплексов с беспилотными летательными аппаратами в ВС РФ на период до 2025 года[R]. Москва: Министерство обороны Российской Федерации, 2009 (in Russian). |
4 | Bus Air. Future Combat Air System (FCAS): Shaping the future of air power[EB/OL]. (2017-08-15) [2024-01-27]. . |
5 | 李航航, 杨建元. 无人机作战使用与技术发展趋势[J]. 航空兵器, 2003, 10(4): 35-38. |
LI H H, YANG J Y. Operational use and technical development trend of UAV[J]. Aero Weaponry, 2003, 10(4): 35-38 (in Chinese). | |
6 | 沈陶然, 桑隽永. 国外无人机装备发展现状及典型作战模式综述[J]. 新型工业化, 2018, 8(5): 94-97. |
SHEN T R, SANG J Y. A review of the development status and typical operational mode of UAV equipment in foreign countries[J]. The Journal of New Industrialization, 2018, 8(5): 94-97 (in Chinese). | |
7 | UAS Task Force Airspace Integration Integrated Product Team. UAS airspace integration plan—Version 2.0 [R]. Washington, D. C.: Department of Defense, 2011. |
8 | Airforce Technology. Wing Loong unmanned aerial vehicle (UAV)[EB/OL]. (2021-02-02) [2024-01-27]. . |
9 | Office of the Secretary of Defense. Unmanned aerial vehicles roadmap: 2000—2025[R]. Washington, D. C.: Office of the Secretary of Defense, 2001. |
10 | Office of the Secretary of Defense. Unmanned aircraft systems roadmap: 2002—2027[R]. Washington, D. C.: Office of the Secretary of Defense, 2002. |
11 | Office of the Under Secretary of Defense (Acquisition Technology And Logistics). Unmanned systems integrated roadmap: FY2011—2036[R]. Washington, D. C.: Office of the Under Secretary of Defense, 2011. |
12 | DOWNS E. Jane’s avionics: 2010—2011[R]. Jane’s Pub, 2012. |
13 | DOWNS E. Jane’s avionics: 2006—2007[R]. Jane’s Pub, 2007. |
14 | Airforce Technology. nEUROn unmanned combat air vehicle (UCAV) demonstrator[EB/OL]. (2014-06-11)[2024-01-27]. . |
15 | Office of the Secretary of Defense. Unmanned aircraft systems roadmap: 2005—2030[R]. Washington, D. C.: Office of the Secretary of Defense, 2005. |
16 | Defense Science Board. Defense science board task force report: The role of autonomy in DoD systems[R]. Washington, D. C.: Defense Science Board, 2012. |
17 | USAF Office of the Chief Scientist. Autonomous horizons: System autonomy in the air force—A path to the future—volume I: Human-autonomy teaming[R]. Washington, D. C.: Department of the Air Force, 2015. |
18 | BLACK J, LYNCH A, GUSTAFSON K, et al. Multi-domain integration in defense[R]. Cambridge: Rand Corporation Europe, 2022. |
19 | O’ROURKE R. Renewed great power competition: Implications for defense-issues for congress[R]. Washington, D. C.: Congressional Research Service, 2021. |
20 | Air Superiority 2030 (AS 2030) Enterprise Capability Collaboration Team (ECCT). Air superiority 2030 flight plan[R]. Washington, D.C.: Department of the Air Force, 2016. |
21 | LEE C. The next frontier: UAVs for great power conflict: Part I, penetrating strike[R]. Mitchell: Mitchell Institute, 2022. |
22 | Air Force Research Laboratory. Munitions directorate overview to industry[EB/OL]. (2015-02-02) [2024-01-27]. !&&p=a7938444325d9af2JmltdHM9MTcwNjQwMDAwMCZpZ3VpZD0wN2Y5ZjJjOC02MjMwLTY2YTEtMWJhMC1mYzRhNjMxZTY3MjkmaW5zaWQ9NTE4MA&ptn=3&ver=2&hsh=3&fclid=07f9f2c8-6230-66a1-1ba0-fc4a631e6729&psq=munitions+directorate+overview+to+industry%3a10-AFRL-RW-BFI-PACA-2015&u=a1aHR0cHM6Ly93d3cuYWZybC5hZi5taWwvUlcv&ntb=1. |
23 | 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. |
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). | |
24 | PENNY H. Beyond pixie dust: A framework for understanding and developing autonomy in unmanned aircraft[R]. Mitchell: Mitchell Institute, 2022. |
25 | USAF. Air force future operating concept: A view of the air force in 2035[EB/OL]. (2015-09-15) [2023-11-22]. . |
26 | Scientific Advisory Board DAF. Collaborative combat aircraft for next generation air dominance: SAF/PA Release 2022-0484[EB/OL] (2022-10-01) [2023-11-22]. . |
27 | OSBORN K. JADC2: Pentagon breaks through with networked wardrones, ships, stealth jets & tanks will attack together[EB/OL]. (2023-02-23) [2023-11-14]. . |
28 | CURTIS E. Lemay center for doctrine development and education. Reachback and distributed operation[EB/OL].(2016-07-20) [2023-11-14]. . |
29 | DARPA. Strategic technology office outlines vision for “mosaic warfare”[EB/OL]. (2017-08-04) [2023-12-03]. . |
30 | 远望智库. 俄乌冲突中俄乌双方无人机作战运用研究[R]. 远望报告, 2022. |
Techxcope. Research on the usage of UCAVs in Russia-Ukraine conflict[R]. Techxcope Report, 2022 (in Chinese). | |
31 | HELFRICH E. General atomics’ Gambit drones to have different airframes with common ‘cores’[EB/OL]. (2022-09-22) [2023-10-05]. . |
32 | 魏中成, 王海峰, 袁兵, 等. 鸭式飞机矢量喷流对大迎角气动特性的影响[J]. 航空学报, 2020, 41(12): 124434. |
WEI Z C, WANG H F, YUAN B, et al. Canard aircraft interactive behaviors between vectoring jet and aerodynamics at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124434 (in Chinese). | |
33 | 王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 1-25. |
WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 1-25 (in Chinese). | |
34 | 欧阳小平. 现代飞机液压技术[M]. 杭州: 浙江大学出版社, 2016. |
OUYANG X P. Modern hydraulics for aircrafts[M]. Hangzhou: Zhejiang University Press, 2016 (in Chinese). | |
35 | Department of the Air Force. The United States air force artificial intelligence annex to the department of defense artificial intelligence strategy[R]. Washington, D. C.: Department of the Air Force, 2019. |
36 | POPE A P, IDE J S, MIĆOVIĆ D, et al. Hierarchical reinforcement learning for air combat at DARPA’s AlphaDogfight trials[J]. IEEE Transactions on Artificial Intelligence, 2023, 4(6): 1371-1385. |
37 | SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550: 354-359. |
38 | SUTTON R S, BARTO A. Reinforcement learning: An introduction[M]. Cambridge: The MIT Press, 2014. |
39 | 吴华兴. 基于Agent的人机组合行为建模关键技术研究[D]. 西安: 西北工业大学, 2016. |
WU H X. Study on the key technologies in behavior representation for Agent-based pilot-aircraft combination[D].Xi’an: Northwestern Polytechnical University, 2016 (in Chinese). | |
40 | KAELBLING L P, LITTMAN M L, CASSANDRA A R. Planning and acting in partially observable stochastic domains[J]. Artificial Intelligence, 1998, 101(1-2): 99-134. |
41 | XU J W, ZHANG J, YANG L Y, et al. Autonomous decision-making for dogfights based on a tactical pursuit point approach[J]. Aerospace Science and Technology, 2022, 129: 107857. |
42 | 李全军, 张安. 航空电子综合火控系统驾驶员操作程序(POP)仿真[J]. 火力与指挥控制, 2005, 30(4): 71-74. |
LI Q J, ZHANG A. Study on POP simulation for the avionics integrated fire control system[J]. Fire Control & Command Control, 2005, 30(4): 71-74 (in Chinese). | |
43 | LI T, QIN K Y, JIANG B, et al. Neural network-based robust bipartite consensus tracking control of multi-agent system with compound uncertainties and actuator faults[J]. Electronics, 2023, 12(11): 2524. |
44 | 王海峰. 战斗机保障性工程[M]. 北京: 国防工业出版社, 2023. |
WANG H F. Fighter supportability engineering[M]. Beijing: National Defense Industry Press, 2023 (in Chinese). | |
45 | 陈志伟, 张罗庚, 方晓彤, 等. 装备体系可靠性概念、建模与预计方法研究[J]. 系统工程与电子技术, 2024, 46(6): 1975-1985. |
CHEN Z W, ZHANG L G, FANG X T, et al. Reliability concepts, modeling, and prediction methods for weapon system of systems[J]. Systems Engineering and Electronics, 2024, 46(6): 1975-1985 (in Chinese). | |
46 | 王海峰. 战斗机故障预测与健康管理技术应用的思考[J]. 航空科学技术, 2020, 31(7): 3-11. |
WANG H F. Research on application of prognostics and health management technology for fighter aircraft[J]. Aeronautical Science & Technology, 2020, 31(7): 3-11 (in Chinese). | |
47 | 王海峰, 王宏亮, 阳纯波. 航空装备保障智能化发展认识与探讨[J]. 测控技术, 2020, 39(12): 1-9, 27. |
WANG H F, WANG H L, YANG C B. Understanding and discussion on intelligence-based aviation materiel support development[J]. Measurement & Control Technology, 2020, 39(12): 1-9, 27 (in Chinese). | |
48 | 张文宇. 分布式作战与其中的航空装备[EB/OL]. (2018-09-06) [2023-11-14]. . |
ZHANG W Y. Distributed combat with its airborne equipment[EB/OL]. (2018-09-06) [2023-11-14]. (in Chinese). |
[1] | Haifeng WANG, Kunpeng LIU, Hongxin JIANG, Chenxi DU. Aerodynamic optimization method of propeller multi⁃design points and variable pitch angle strategy [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528831-528831. |
[2] | Jing ZHAO, Dan SONG. Integrity monitoring method for GNSS/IMU integrated navigation system of UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 328943-328943. |
[3] | Chuanyun WANG, Yang SU, Linlin WANG, Tian WANG, Jingjing WANG, Qian GAO. Multi-object continuous robust tracking algorithm for anti-UAV swarm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 329017-329017. |
[4] | Chuihuan KONG, Dawei WU, Zhaoguang TAN, Lijun PAN, Rubing MA, Jiangtao SI. Design of fully electric scheme for three⁃surface verification aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629618-629618. |
[5] | Hongyu YIN, Yu WU, Tianjiao LIANG. Cooperative path planning for patrol coverage of fixed wing UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 328944-328944. |
[6] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[7] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[8] | Yunpeng CAI, Dapeng ZHOU, Jiangchuan DING. Intelligent collaborative control of UAV swarms with collision avoidance safety constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529683-529683. |
[9] | Zhu WANG, Mengtong ZHANG, Zhenpeng ZHANG, Guangtong XU. Multi-UAV cooperative path planning based on multi-index dynamic priority [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328816-328816. |
[10] | Gaojie ZHENG, Xiaoming HE, Dongpo LI, Huijun TAN, Kun WANG, Zhenlong WU, Depeng WANG. Double 90° deflection inlet/volute coupling flow characteristics of tail-powered unmanned aerial vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128782-128782. |
[11] | Yuan YAO, Yuke DAI, Yiming XU. Overall parameter design of solar UAV considering uncertainty [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 529856-529856. |
[12] | Wenqing YANG, Yueyang GUO, Yuanbo DONG, Dong XUE, Jianlin XUAN. Research progress on fluid structure interaction of bionic flexible flapping wing UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530069-530069. |
[13] | Xiao WANG, Zhenbao LIU, Zhongke SHI. Shadow detection of UAV target based on residual mixed supervision network [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530062-530062. |
[14] | Qian ZHANG, Guanwei YAN, Qin NIE, Ruihai CHEN, Jianing LIU. Aircraft-missile cooperative guidance method based on trajectory numerical optimization of long-range air-to-air missiles [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530138-530138. |
[15] | Baigang MI, Hao ZHAN, Liwei SONG, Guodong QIN, Yangping DENG. Integrated design of high altitude super long endurance UAV system driven by distributed ground microwave power [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 529982-529982. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341