1 |
刘伯健, 李爱军, 郭永, 等. 带有输入受限的无人机精确编队合围容错控制[J]. 航空学报, 2023, 44(9): 327414.
|
|
LIU B J, LI A J, GUO Y, et al. Fault-tolerant containment control for precise formation of UAVs with input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 327414 (in Chinese).
|
2 |
刘树光, 刘荣华, 王欢, 等. 国外无人机集群协同控制技术新进展[J]. 飞航导弹, 2021(8): 24-31.
|
|
LIU S G, LIU R H, WANG H, et al. New progress of cooperative control technology of UAV cluster abroad[J]. Aerodynamic Missile Journal, 2021(8): 24-31 (in Chinese).
|
3 |
吴杰宏, 李丹阳. 无人机集群编队控制方法研究综述[J]. 无线电通信技术, 2023, 49(4): 589-596.
|
|
WU J H, LI D Y. A review of UAV cluster formation control methods[J]. Radio Communications Technology, 2023, 49(4): 589-596 (in Chinese).
|
4 |
ALI Z A, ISRAR A, ALKHAMMASH E H, et al. A leader-follower formation control of multi-UAVs via an adaptive hybrid controller[J]. Complexity, 2021, 2021: 1-16.
|
5 |
CHEN Q Y, WANG Y J, LU Y F. Formation control for UAVs based on the virtual structure idea and nonlinear guidance logic[C]∥2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE). Piscataway: IEEE Press, 2021: 135-139.
|
6 |
吴宇, 梁天骄. 基于改进一致性算法的无人机编队控制[J]. 航空学报, 2020, 41(9): 323848.
|
|
WU Y, LIANG T J. Improved consensus-based algorithm for unmanned aerial vehicle formation control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 323848 (in Chinese).
|
7 |
王晶, 顾维博, 窦立亚. 基于Leader-Follower的多无人机编队轨迹跟踪设计[J]. 航空学报, 2020, 41(S1): 723758.
|
|
WANG J, GU W B, DOU L Y. Leader-Follower formation control of multiple UAVs with trajectory tracking design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723758 (in Chinese).
|
8 |
王祥科, 陈浩, 赵述龙. 大规模固定翼无人机集群编队控制方法[J]. 控制与决策, 2021, 36(9): 2063-2073.
|
|
WANG X K, CHEN H, ZHAO S L. Formation control of large-scale fixed-wing unmanned aerial vehicle swarms[J]. Control and Decision, 2021, 36(9): 2063-2073 (in Chinese).
|
9 |
ROSA V S M, BELO E M. Virtual structure formation flight control based on nonlinear MPC[C]∥2021 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2021: 1383-1390.
|
10 |
SHEN Y K, WEI C. Multi-UAV flocking control with individual properties inspired by bird behavior[J]. Aerospace Science and Technology, 2022, 130: 107882.
|
11 |
姜龙亭, 魏瑞轩, 张启瑞, 等. 基于群智机理的集群防碰撞控制[J]. 航空学报, 2020, 41(S2): 724294.
|
|
JIANG L T, WEI R X, ZHANG Q R, et al. Anti-collision control of UAVs based on swarm intelligence mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724294 (in Chinese).
|
12 |
张令, 段海滨, 雍婷, 等. 基于寒鸦配对交互行为的无人机集群编队控制[J]. 北京航空航天大学学报, 2021, 47(2): 391-397.
|
|
ZHANG L, DUAN H B, YONG T, et al. Unmanned aerial vehicle swarm formation control based on paired interaction mechanism in jackdaws[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 391-397 (in Chinese).
|
13 |
徐博, 张大龙. 基于量子行为鸽群优化的无人机紧密编队控制[J]. 航空学报, 2020, 41(8): 323722.
|
|
XU B, ZHANG D L. Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by quantum behavior[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323722 (in Chinese).
|
14 |
SUN D W, KWON C, HWANG I. Hybrid flocking control algorithm for fixed-wing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(11): 2443-2455.
|
15 |
VÁSÁRHELYI G, VIRÁGH C, SOMORJAI G, et al. Optimized flocking of autonomous drones in confined environments[J]. Science Robotics, 2018, 3(20): eaat3536.
|
16 |
WANG X, WANG S, LIANG X X, et al. Deep reinforcement learning: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, PP(99): 1-15.
|
17 |
SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354-359.
|
18 |
HUNG S M, GIVIGI S N. A Q-learning approach to flocking with UAVs in a stochastic environment[J]. IEEE Transactions on Cybernetics, 2016, 47(1): 186-197.
|
19 |
WANG C, WANG J, ZHANG X D. A deep reinforcement learning approach to flocking and navigation of uavs in large-scale complex environments[C]∥2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Piscataway: IEEE Press, 2019: 1228-1232.
|
20 |
WANG C, YAN C, XIANG X J, et al. A continuous actor-critic reinforcement learning approach to flocking with fixed-wing UAVs[C]∥Asian Conference on Machine Learning. Berlin: Springer, 2019: 64-79.
|
21 |
SUTTON R S, BARTO A G. Reinforcement learning: An introduction[M]. 2nd ed. Cambridge: The MIT Press, 2017.
|
22 |
HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor[DB/OL]. arXiv preprint: 1801.01290, 2018.
|
23 |
García J, FERNÁNDEZ F. A comprehensive survey on safe reinforcement learning[J]. Journal of Machine Learning Research, 2015, 16: 1437-1480.
|
24 |
BRUNKE L, GREEFF M, HALL A W, et al. Safe learning in robotics: From learning-based control to safe reinforcement learning[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5: 411-444.
|