Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (13): 630037-630037.doi: 10.7527/S1000-6893.2024.30037
• special column • Previous Articles
Shaoping ZHANG1(), Huiming GUO1, Tong GAO2, Weihong ZHANG2
Received:
2023-12-28
Revised:
2024-01-22
Accepted:
2024-03-06
Online:
2024-07-15
Published:
2024-04-10
Contact:
Shaoping ZHANG
E-mail:zhangshaoping@aecc.cn
Supported by:
CLC Number:
Shaoping ZHANG, Huiming GUO, Tong GAO, Weihong ZHANG. Design and manufacturing method of multi-scale integrated load bearing thin-walled structure for application in next-generation aeroengine based on advanced laser processing technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 630037-630037.
1 | 李其汉, 王延荣. 航空发动机结构强度设计问题[M]: 上海:上海交通大学出版社, 2014:12-25. |
LI Q H, WANG Y R. The design problem of aero-engine strucuture strength[M]: Shanghai: Shanghai Jiao Tong University Press, 2014: 12-25 (in Chinese). | |
2 | PRAKASH K S, NANCHARAIH T, RAO V V S. Additive manufacturing techniques in manufacturing -an overview[J]. Materials Today: Proceedings, 2018,5(2): 3873-3882. |
3 | GAO W, ZHANG Y B, RAMANUJAN D, et al. The status, challenges, and future of additive manufacturing in engineering[J]. Computer-Aided Design, 2015,69: 65-89. |
4 | METEYER S, XU X, PERRY N, et al. Energy and material flow analysis of binder-jetting additive manufacturing processes[J]. Procedia CIRP, 2014, 15: 19-25. |
5 | MUELLER B. Additive manufacturing technologies-rapid prototyping to direct digital manufacturing[J]. Assembly Automation, 2012, 32:373-388. |
6 | IBHADODE O, ZHANG Z D, SIXT J, et al. Topology optimization for metal additive manufacturing: current trends, challenges, and future outlook[J]. Virtual and Physical Prototyping, 2023, 18(1): 192-218. |
7 | TIAN X Y, WU L L, GU D D, et al. Roadmap for additive manufacturing: toward intellectualization and industrialization[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022,1(1): 10-14. |
8 | FERNÁNDEZ E, COLLET M, ALARCÓN P, et al. An aggregation strategy of maximum size constraints in density-based topology optimization[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 30-42. |
9 | FERNANDERS F J, PAVANELLO R. Topology optimization of adhesive material in a single lap joint using an evolutionary structural optimization method and a cohesive zone model as failure criterion:[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236(4):757-778. |
10 | ALLAIRE G, GOURNAY F D, JOUVE F, et al. Structural optimization using topological and shape sensitivity via a level set method[J]. Control & Cybernetics, 2005, 34(1): 59-80. |
11 | TAKAYUKI Y, NISHIWAKI S, IZUI K, et al. A structural optimization method incorporating level set boundary expressions based on the concept of the phase field method[J].Transactions of the Japan Society of Mechanical Engineers Series A, 2009, 75(753): 550-558. |
12 | ZHOU L, GAO T, ZHANG W H. Hole control methods in feature-driven topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 417: 16-44. |
13 | ZHANG W S, LI D, ZHANG J, et al. Minimum length scale control in structural topology optimization based on the Moving Morphable Components approach[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 311: 327-355. |
14 | GUEST J K. Imposing maximum length scale in topology optimization[J]. Structural and Multidisciplinary Optimization, 2009, 37: 463-473. |
15 | YANG K K, FERNANDEZ E, NIU C, et al. Note on spatial gradient operators and gradient-based minimum length constraints in SIMP topology optimization[J]. Structural and Multidisciplinary Optimization, 2019,60(1): 393-400. |
16 | ZHOU M D, LAZAROV B S, WANG F W, et al. Minimum length scale in topology optimization by geometric constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 293: 266-282. |
17 | SONG L L, ZHAO J, GAO T, et al. Length scale control in density-based multi-material topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 401: 1221-1225. |
18 | SONG L L, GAO T, WANG J, et al. Directional maximum length scale control in density-based topology optimization[J]. Computers & Structures, 2024,292: 107-136. |
19 | ZHOU L, SIGMUND O, ZHANG W H. Self-supporting structure design with feature-driven optimization approach for additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2021,386: 1-29 |
20 | ZHANG W H, WANG C, ZHOU L, et al. Three-dimensional topology optimization considering overhang constraints with B-spline parameterization[J]. Computers & Structures, 2022, 269: 8-23. |
21 | PAUL R, ANAND S, GERNER F. Effect of thermal deformation on part errors in metal powder based additive manufacturing processes[J]. Journal of Manufacturing Science and Engineering, 2014, 136(3): 31009. |
22 | SONG L L, GAO T, TANG L, et al. An all-movable rudder designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Computers & Structures, 2021, 243: 106405. |
23 | SHI G H, GUAN C Q, QUAN D L, et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Chinese Journal of Aeronautics, 2020,33(4): 1252-1261. |
24 | RIBEIRO T P, BERNARDO L F A, ANDRADE J M A. Topology optimisation in structural steel design for additive manufacturing[J]. Applied Sciences, 2021,11(5): 2112. |
25 | 范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展[J]. 力学进展, 2007, 37(1): 99-112. |
FAN H L, YANG W. Development of lattice materials with high specific stiffiness and strength[J]. Advances in Mechanics, 2007, 37(1): 99-112 (in Chinese). | |
26 | 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4): 517-535. |
LU T J, HE D P, CHEN C Q, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Advances in Mechanics, 2006, 36(4): 517-535 (in Chinese). | |
27 | CHEN Y, MAI Y W, YE L. Perspectives for multiphase mechanical metamaterials[J]. Materials Science and Engineering: Reports, 2023, 153: 100725. |
28 | LU C X, HSIEH M T, HUANG Z F, et al. Architectural design and additive manufacturing of mechanical metamaterials: A review[J]. Engineering, 2022, 17: 44-63. |
29 | SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications[J]. Advanced Engineering Materials, 2019, 21(3): 1800864. |
30 | MENG L, SHI J X, YANG C, et al. An emerging class of hyperbolic lattice exhibiting tunable elastic properties and impact absorption through chiral twisting[J]. Extreme Mechanics Letters, 2020, 40: 100869. |
31 | AL-KETAN O, AL-RUB R K ABU. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices[J]. Advanced Engineering Materials. 2019, 21(10): 1900524. |
32 | HAN L, CHE S A. An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems[J]. Advanced Materials, 2018, 30(17): 1705708. |
33 | WANG J H, CHEN K, ZENG M, et al. Assessment of flow and heat transfer of triply periodic minimal surface based heat exchangers[J]. Energy, 2023, 282: 128806. |
34 | LI W G, LI W H, YU Z B. Heat transfer enhancement of water-cooled triply periodic minimal surface heat exchangers[J]. Applied Thermal Engineering, 2022,217: 119198. |
35 | LI T T, CHEN Y Y, HU X Y, et al. Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties[J]. Materials & Design, 2018, 142: 247-258. |
36 | XIAO L, XU X, SONG W, et al. A multi-cell hybrid approach to elevate the energy absorption of micro-lattice materials[J]. Materials, 2020, 13(18): 4083. |
37 | PAN C, HAN Y F, LU J P. Design and optimization of lattice structures: A review[J]. Applied Sciences, 2020,10(18): 25-51. |
38 | 杜义贤, 李涵钊, 田启华, 等. 基于能量均匀化的高剪切强度周期性点阵结构拓扑优化[J]. 机械工程学报, 2017,53(18): 152-160. |
DU Y X, LI H Z, TIAN Q H, et al. Topology optimization of periodic lattice structure with high shear strength using energy-based homogenization [J]. Journal of Mechanical Engineering, 2017, 53(18):152-160 (in Chinese). | |
39 | ZHANG W H, WANG F W, DAI G M, et al. Topology optimal design of material microstructures using strain energy-based method[J]. Chinese Journal of Aeronautics, 2007, 20(4): 320-326. |
40 | BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. |
41 | 张卫红,徐仕杰, 朱继宏. 循环对称结构的多尺度拓扑优化方法[J]. 计算力学学报, 2021, 38(4): 512-522. |
ZHANG W H, XU S J, ZHU J H. Multi-scale topology optimization method for cyclic symmetric structures[J]. Chinese Journal of Computational Mechanics, 2021, 38(4):512-522 (in Chinese). | |
42 | ALBERDI R, DINGREVILLE R, ROBBINS J, et al. Multi-morphology lattices lead to improved plastic energy absorption[J]. Materials & Design, 2020, 194: 1-10. |
43 | OZDEMIR Z, HERNANDEZ-NAVA E, TYAS A, et al. Energy absorption in lattice structures in dynamics: Experiments[J]. International Journal of Impact Engineering, 2016, 89: 49-61. |
44 | SAHARIAH B J, BAISHYA M J, NAMDEO A, et al. A novel strategy to design lattice structures with zero Poisson’s ratio[J]. Engineering Structures, 2023,288: 116214. |
45 | QIN Q, DAYYANI I, WEBB P. Structural mechanics of cylindrical fish-cell zero Poisson’s ratio metamaterials[J]. Composite Structures, 2022, 289: 115455. |
46 | XUE X, LIN C C, WU F, et al. Lattice structures with negative Poisson’s ratio: A review[J]. Materials Today Communications, 2023, 34: 105132. |
47 | CHEN Z Y, WANG Z, ZHOU S W, et al. Novel negative Poisson’s ratio lattice structures with enhanced stiffness and energy absorption capacity[J]. Materials, 2018,11(7): 1095. |
48 | XU Z, ZHAO H F, WANG K. Design of hourglass-lattice metastructure with near-zero thermal expansion using structural optimization method[J]. Engineering Structures, 2023, 277: 115374. |
49 | LAKES R, LEHMAN J. Stiff, strong zero thermal expansion lattices via the Poisson effect[J]. Journal of Materials Research, 2013, 28(17): 2499-2508. |
50 | WANG C, GU X J, ZHU J H, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2020,61(3): 869-894. |
51 | GAO J, LUO Z, XIA L, et al. Concurrent topology optimization of multiscale composite structures in Matlab[J]. Structural and Multidisciplinary Optimization, 2019, 60(6): 2621-2651. |
52 | LIU L, YAN J, CHENG G D. Optimum structure with homogeneous optimum truss-like material[J]. Computers & Structures, 2008, 86(13-14): 1417-1425. |
53 | LI Y, GAO T, ZHOU Q Y, et al. Layout design of thin-walled structures with lattices and stiffeners using multi-material topology optimization[J]. Chinese Journal of Aeronautics, 2023, 36(4): 496-509. |
54 | DALLAGO M, RAGHAVENDRA S, LUCHIN V, et al. Geometric assessment of lattice materials built via Selective Laser Melting[J]. Materials Today: Proceedings, 2019, 7: 353-361. |
55 | SING S L, WIRIA F E, YEONG W Y. Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior[J]. Robotics and Computer-Integrated Manufacturing, 2018,49: 170-180. |
56 | PENG C X, TRAN P, NGUYEN-XUAN H, et al. Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach[J]. Composite Structures, 2020, 235: 111821. |
57 | ZARGARIAN A, ESFAHANIAN M, KADKHODAPOUR J, et al. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures[J]. Materials Science and Engineering: C, 2016, 60: 339-347. |
58 | VIGLIOTTI A, PASINI D. Stiffness and strength of tridimensional periodic lattices[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 229-232: 27-43. |
59 | SPAETH M, BARTHLOTT W. Lotus-Effect®: Biomimetic super-hydrophobic surfaces and their application[J]. Advances in Science and Technology, 2009, 60: 38-46. |
60 | LIU B, HE Y N, FAN Y, et al. Fabricating super‐hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting[J]. Macromolecular rapid communications, 2006,27(21): 1859-1864. |
61 | FENG L, LI S H, LI Y S, et al. Super‐hydrophobic surfaces: from natural to artificial[J]. Advanced materials,2002, 14(24): 1857-1860. |
62 | ZHANG D Y, LUO Y Y, XIANG L, et al. Numerical simulation and experimental study of drag-reducing surface of a real shark skin[J]. Journal of Hydrodynamics, Ser B, 2011, 23(2): 204-211. |
63 | DEAN B, BHUSHAN B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1929): 4775-4806. |
64 | VENDITTI J G. Turbulent flow and drag over fixed two‐and three‐dimensional dunes[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F4): F04008. |
65 | 沈洪,任浩东, 李海东. 面向功能表面的激光仿生制造技术研究进展[J]. 空天防御, 2023, 6(12): 12-22. |
SHEN H, REN H D, LI H D. Research progress in laser biomimetic manufacturing technology for functional surfaces[J]. Aerospace Defense, 2023, 6(12): 12-22 (in Chinese). | |
66 | BIXLER G D, BHUSHAN B. Bioinspired micro/nanostructured surfaces for oil drag reduction in closed channel flow[J]. Soft Matter, 2013, 9(5): 1620-1635. |
67 | 肖强, 徐睿. 超快激光制备材料表面微纳结构的研究进展[J]. 中国表面工程, 2020, 33(1): 1-16. |
XIAO Q, XU R. Research progress in surface microstructure of materials prepared by ultrafast laser[J]. China Surface Engineering, 2020, 33(1): 1-16 (in Chinese). | |
68 | 江国琛, 潘瑞, 陈昶昊, 等. 超快激光制备水面减阻微纳结构及其耐蚀性研究[J]. 中国激光, 2020, 47(8): 73-81. |
JIANG G C, PAN R, CHEN C H, et al. Preparation of water surface drag reducing Micro/Nano structures by ultrafast laser and their corrosion resistance research[J]. Chinese Journal of Lasers, 2020, 47(8): 73-81 (in Chinese). |
[1] | Li CHEN, Xiaoyun ZENG, Wen HUANG, Jianfei ZHANG. Lattice structure optimization design under harmonic base acceleration excitations [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529704-529704. |
[2] | Rui SI, Yong CHEN. Application trends of additive manufacturing technology for civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529677-529677. |
[3] | Tianhe GAO, Kuo TIAN, Lei HUANG, Shu ZHANG, Zengcong LI. Data⁃driven shape⁃topology optimization method for curved shells [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 428806-428806. |
[4] | Yi LI, Zhenzhong WANG, Yuhang XIAO, Pengfei ZHANG. Review of laser⁃metal additive manufacturing + X hybrid technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629349-629349. |
[5] | Kun LI, Chunlin ZUO, Ruobing LIAO, Chen JI, Bin JIANG, Fusheng PAN. Current status and prospects of research on residual stress in additive manufacturing of Al alloys [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 29380-029380. |
[6] | Wentao LI, Yunqin HE, Wenbo LI, Yiyi ZHANG, Guozhu LIANG. 3D grain reverse design and shape optimization for solid rocket motor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529089-529089. |
[7] | Lun TANG, Shengfu YU, Bo ZHENG, Yusheng SHI, Ying CHEN. Development and application of in⁃situ Al2O3 aluminum alloy powder core wire for cylindrical lattice [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 626864-626864. |
[8] | Weihong ZHANG, Han ZHOU, Shaoying LI, Jihong ZHU, Lu ZHOU. Material⁃structure integrated design for high⁃performance aerospace thin⁃walled component [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627428-627428. |
[9] | Zhongqin LIN, Zhongqi YU, Donghua DAI, Xiaoguang FAN, Shengfu YU, Dongdong GU, Shuhui LI, Yusheng SHI. Development and prospect of metal spinning: Additive hybrid manufacturing technology for complex thin⁃walled component with high ribs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627493-627493. |
[10] | Jian HAN, Shiyong SUN, Bin NIU, Rui YANG, Dongjiang WU. Progress in manufacturing technologies of resin⁃based composite lattice structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 628255-628255. |
[11] | Mengqi GU, Jiacai ZHU, Wanlin GUO, Song XUE. Prospects for fatigue durability and reliability of reusable launch vehicle structures [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628299-628299. |
[12] | Zhiqiang ZHANG, Qingze GOU, Xuecheng LU, Hao WANG, Yiran CAO, Zhiyong GUO. Droplet transfer behavior of high strength aluminum alloy CMT+P arc additive manufacturing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 427881-427881. |
[13] | YAN Hao, WU Xiaoming. Topology optimization and structure evolution of turbine disks based on load sensitivity suppression [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 225295-225295. |
[14] | GUO Wenjie, ZHU Jihong, LUO Lilong, CHANG Liang. Integrated layout and topology optimization of multi-component structural systems considering component shape-preserving design constraints [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 225225-225225. |
[15] | ZHANG Peiyu, ZHOU Xin, LI Yinghong. Progress on high energy beam repair of single crystal turbine blades [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525610-525610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341