Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (10): 229221-229221.doi: 10.7527/S1000-6893.2023.29221
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Jiawei FU1,2(), Zefei YANG2, Yahui CAI2, Xiangfan NIE3, Lehua QI1,2
Received:
2023-06-26
Revised:
2023-07-12
Accepted:
2023-08-09
Online:
2024-05-25
Published:
2023-08-18
Contact:
Jiawei FU
E-mail:jiawei.fu@nwpu.edu.cn
Supported by:
CLC Number:
Jiawei FU, Zefei YANG, Yahui CAI, Xiangfan NIE, Lehua QI. Identification method for anisotropic and high strain rate plasticity of sheet metals based on heterogeneous highspeed inertial impact and principle of virtual work[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 229221-229221.
Table 2
Identification results of anisotropic yield + strain hardening + strain rate strengthening parameters
加载方向 | 虚场 | n | C | H | F | N | |||
---|---|---|---|---|---|---|---|---|---|
参考值 | 700 | 0.02 | 0.22 | 0.008 | 0.4 | 0.45 | 0.8 | ||
0° | VF1+ VF2+ VF3 | 初始值1 | 500 | 0.01 | 0.1 | 0.005 | 0.5 | 0.5 | 0.5 |
结果1 | 644 | 0.012 4 | 0.176 | 0.005 94 | 0.383 | 0.439 | 0.778 | ||
误差1/% | 7.94 | 37.9 | 19.9 | 25.7 | 4.16 | 2.28 | 2.76 | ||
初始值2 | 400 | 0.03 | 0.2 | 0.01 | 0.2 | 0.7 | 1.0 | ||
结果2 | 634 | 0.011 7 | 0.171 | 0.006 10 | 0.386 | 0.443 | 0.757 | ||
误差2/% | 9.48 | 41.4 | 22.5 | 23.7 | 3.51 | 1.51 | 5.36 |
Table 4
Identification results of anisotropic yield and strain rate strengthening parameters under different loading modes
加载方向 | 虚场 | 加载模式 | C | H | F | N | |
---|---|---|---|---|---|---|---|
参考值 | 0.008 | 0.4 | 0.45 | 0.8 | |||
0° | VF1+ VF2+ VF3 | 加载模式b | 初始值1 | 0.005 | 0.5 | 0.5 | 0.5 |
结果1 | 0.006 96 | 0.402 | 0.482 | 0.720 | |||
误差1/% | 13.0 | -0.51 | -7.15 | 9.99 | |||
初始值2 | 0.02 | 0.2 | 0.7 | 1.0 | |||
结果2 | 0.007 20 | 0.399 | 0.483 | 0.901 | |||
误差2/% | 10.1 | 0.04 | -7.26 | -12.6 | |||
加载模式c | 初始值1 | 0.005 | 0.5 | 0.5 | 0.5 | ||
结果1 | 0.008 89 | 0.354 | 0.415 | 0.892 | |||
误差1/% | -11.1 | 11.4 | 7.56 | -11.5 | |||
初始值2 | 0.02 | 0.3 | 0.2 | 0.4 | |||
结果2 | 0.008 95 | 0.351 | 0.408 | 0.881 | |||
误差2/% | -11.8 | 12.3 | 9.24 | -10.2 | |||
加载模式d | 初始值1 | 0.005 | 0.5 | 0.5 | 0.5 | ||
结果1 | 0.00866 | 0.384 | 0.536 | 0.741 | |||
误差1/% | -8.26 | 3.99 | -19.1 | 7.37 | |||
初始值2 | 0.001 | 0.6 | 0.8 | 0.6 | |||
结果2 | 0.008 99 | 0.381 | 0.536 | 0.865 | |||
误差2/% | -12.3 | 4.74 | -19.1 | -8.14 |
1 | 冯振宇, 傅博宇, 解江, 等. 爆炸冲击载荷下机身壁板的动态响应[J]. 航空学报, 2022, 43(6): 525513. |
FENG Z Y, FU B Y, XIE J, et al. Dynamic response of fuselage panel under explosive impact load[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525513 (in Chinese). | |
2 | 刘宗兴, 刘军, 李维娜. 爆炸冲击载荷下典型机身结构动响应及破坏[J]. 航空学报, 2021, 42(2): 224252. |
LIU Z X, LIU J, LI W N. Dynamic response and failure of typical fuselage structure under blast impact load[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224252 (in Chinese). | |
3 | ABDULLAH N A Z, SANI M S M, SALWANI M S, et al. A review on crashworthiness studies of crash box structure[J]. Thin-Walled Structures, 2020, 153: 106795. |
4 | JIA B, RUSINEK A, XIAO X K, et al. Simple shear behavior of 2024-T351 aluminum alloy over a wide range of strain rates and temperatures: Experiments and constitutive modeling[J]. International Journal of Impact Engineering, 2021, 156: 103972. |
5 | JI C, LI Z G, LIU J G. Development of an improved MMC-based fracture criterion characterizing the anisotropic and strain rate-dependent behavior of 6061-T5 aluminum alloy[J]. Mechanics of Materials, 2020, 150: 103598. |
6 | 邹学锋, 潘凯, 燕群, 等. 多场耦合环境下高超声速飞行器结构动强度问题综述[J]. 航空科学技术, 2020, 31(12): 3-15. |
ZOU X F, PAN K, YAN Q, et al. Overview of dynamic strength of hypersonic vehicle structure in multi-field coupling environment[J]. Aeronautical Science & Technology, 2020, 31(12): 3-15 (in Chinese). | |
7 | ZANCHETTA B D, SILVA V K DA, SORDI V L, et al. Effect of asymmetric rolling under high friction coefficient on recrystallization texture and plastic anisotropy of AA1050 alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2262-2272. |
8 | 陈跃良, 张柱柱, 卞贵学, 等. 高应变率条件下38CrMoAl钢的动态力学行为及失效模型[J]. 航空学报, 2020, 41(10): 423709. |
CHEN Y L, ZHANG Z Z, BIAN G X, et al. Dynamic mechanical behavior and failure model of 38CrMoAl steel under high strain rate[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 423709 (in Chinese). | |
9 | BHUJANGRAO T, FROUSTEY C, IRIONDO E, et al. Review of intermediate strain rate testing devices[J]. Metals, 2020, 10(7): 894. |
10 | FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies[J]. International Journal of Impact Engineering, 2004, 30(7): 725-775. |
11 | KIMM J S, BERGMANN J A, WÖSTE F, et al. Deformation behavior of 42CrMo4 over a wide range of temperatures and strain rates in Split-Hopkinson pressure bar tests[J]. Materials Science and Engineering: A, 2021, 826: 141953. |
12 | ZHAO Z Q, LIU P, DANG H Y, et al. Effects of loading rate and loading direction on the compressive failure behavior of a 2D triaxially braided composite[J]. International Journal of Impact Engineering, 2021, 156: 103928. |
13 | NUREL B, NAHMANY M, FRAGE N, et al. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting[J]. Additive Manufacturing, 2018, 22: 823-833. |
14 | IRAUSQUÍN I, PÉREZ-CASTELLANOS J L, MIRA⁃ NDA V, et al. Evaluation of the effect of the strain rate on the compressive response of a closed-cell aluminium foam using the split Hopkinson pressure bar test[J]. Materials & Design, 2013, 47: 698-705. |
15 | CHEN W, ZHANG B, FORRESTAL M J. A split Hopkinson bar technique for low-impedance materials[J]. Experimental Mechanics, 1999, 39(2): 81-85. |
16 | 王维斌, 索涛, 郭亚洲, 等. 电磁霍普金森杆实验技术及研究进展[J]. 力学进展, 2021, 51(4): 729-754. |
WANG W B, SUO T, GUO Y Z, et al. Experimental technique and research progress of electromagnetic Hopkinson bar[J]. Advances in Mechanics, 2021, 51(4): 729-754 (in Chinese). | |
17 | 邹正平, 张猛, 郎利辉. 基于三维数字图像相关法的管材胀形试验[J]. 航空学报, 2022, 43(12): 425989. |
ZOU Z P, ZHANG M, LANG L H. Tube bulging test based on 3D digital image correlation method[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 425989 (in Chinese). | |
18 | JANELIUKSTIS R, CHEN X. Review of digital image correlation application to large-scale composite structure testing[J]. Composite Structures, 2021, 271: 114143. |
19 | XU Y W, BAO R. Residual stress determination in friction stir butt welded joints using a digital image correlation-aided slitting technique[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1258-1269. |
20 | SUR F, BLAYSAT B, GRÉDIAC M. Determining displacement and strain maps immune from aliasing effect with the grid method[J]. Optics and Lasers in Engineering, 2016, 86: 317-328. |
21 | GRÉDIAC M, SUR F, BLAYSAT B. The grid method for In-plane displacement and strain measurement: A review and analysis[J]. Strain, 2016, 52(3): 205-243. |
22 | ZHAO G Q, YU X Q, ZENG Q L, et al. Evolution of local deformation field inside adiabatic shear band of 1018 steel studied using digital image correlation with micro-speckles[J]. Extreme Mechanics Letters, 2022, 54: 101769. |
23 | PAN B, YU L P, YANG Y Q, et al. Full-field transient 3D deformation measurement of 3D braided composite panels during ballistic impact using single-camera high-speed stereo-digital image correlation[J]. Composite Structures, 2016, 157: 25-32. |
24 | TIWARI V, SUTTON M A, MCNEILL S R, et al. Application of 3D image correlation for full-field transient plate deformation measurements during blast loading[J]. International Journal of Impact Engineering, 2009, 36(6): 862-874. |
25 | JUNGSTEDT E, ÖSTLUND S, BERGLUND L A. Transverse fracture toughness of transparent wood biocomposites by FEM updating with cohesive zone fracture modeling[J]. Composites Science and Technology, 2022, 225: 109492 |
26 | JUNGSTEDT E, OLIAEI E, LI L W, et al. Mechanical behavior of all-lignocellulose composites—comparing micro-and nanoscale fibers using strain field data and FEM updating[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161: 107095. |
27 | HAO Z Q, JI X H, DENG L L, et al. Measurement of multiple mechanical properties for polymer composites using digital image correlation at elevated temperatures[J]. Materials & Design, 2021, 198: 109349. |
28 | ZHAO J Y, DONG J, LIU Z W, et al. Characterization method of mechanical properties of rubber materials based on stereo finite-element-model updating[J]. Polymer Testing, 2019, 79: 106015. |
29 | GERBIG D, BOWER A, SAVIC V, et al. Coupling digital image correlation and finite element analysis to determine constitutive parameters in necking tensile specimens[J]. International Journal of Solids and Structures, 2016, 97-98: 496-509. |
30 | ZALETELJ K, SLAVIČ J, BOLTEŽAR M. Full-field DIC-based model updating for localized parameter identification[J]. Mechanical Systems and Signal Processing, 2022, 164: 108287. |
31 | WANG W Z, MOTTERSHEAD J E, IHLE A, et al. Finite element model updating from full-field vibration measurement using digital image correlation[J]. Journal of Sound and Vibration, 2011, 330(8): 1599-1620. |
32 | PIERRON F, GRÉDIAC M. The linear virtual fields method[M]. New York: Springer, 2012: 57-106. |
33 | MARTINS J M P, THUILLIER S, ANDRADE-CAMPOS A. Calibration of a modified Johnson-Cook model using the Virtual Fields Method and a heterogeneous thermo-mechanical tensile test[J]. International Journal of Mechanical Sciences, 2021, 202-203: 106511. |
34 | KIM C, KIM J H, LEE M G. A virtual fields method for identifying anisotropic elastic constants of fiber reinforced composites using a single tension test: Theory and validation[J]. Composites Part B: Engineering, 2020, 200: 108338. |
35 | FU J W, BARLAT F, KIM J H, et al. Application of the virtual fields method to the identification of the homogeneous anisotropic hardening parameters for advanced high strength steels[J]. International Journal of Plasticity, 2017, 93: 229-250. |
36 | ROSSI M, PIERRON F, ŠTAMBORSKÁ M. Application of the virtual fields method to large strain anisotropic plasticity[J]. International Journal of Solids and Structures, 2016, 97-98: 322-335. |
37 | FLETCHER L, DAVIS F, DREUILHE S, et al. High strain rate elasto-plasticity identification using the image-based inertial impact (IBII) test part 1: Error quantification[J]. Strain, 2021, 57(2): e12375. |
38 | FU J W, ZHU K Y, NIE X F, et al. Inertia-based identification of elastic anisotropic properties for materials undergoing dynamic loadings using the virtual fields method and heterogeneous impact tests[J]. Materials & Design, 2021, 203: 109594. |
39 | KOOHBOR B, KIDANE A, SUTTON M A, et al. Analysis of dynamic bending test using ultra high speed DIC and the virtual fields method[J]. International Journal of Impact Engineering, 2017, 110: 299-310. |
40 | PIERRON F, ZHU H, SIVIOUR C. Beyond Hopkinson’s bar[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372(2023): 20130195. |
41 | HILL R, OROWAN E. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1948, 193(1033): 281-297. |
42 | 付佳伟, 马臻, 聂祥樊, 等. 基于虚场法的铝合金各向异性屈服及硬化属性参数同步表征[J]. 机械工程学报, 2021, 57(20): 68-78, 88. |
FU J W, MA Z, NIE X F, et al. Identification of the anisotropic yield and hardening constitutive parameters for aluminum alloys using the virtual fields method[J]. Journal of Mechanical Engineering, 2021, 57(20): 68-78, 88 (in Chinese). | |
43 | FU J W, XIE W W, ZHOU J M, et al. A method for the simultaneous identification of anisotropic yield and hardening constitutive parameters for sheet metal forming[J]. International Journal of Mechanical Sciences, 2020, 181: 105756. |
44 | SUTTON M A, DENG X, LIU J, et al. Determination of elastic-plastic stresses and strains from measured surface strain data[J]. Experimental Mechanics, 1996, 36(2): 99-112. |
45 | FLETCHER L, DAVIS F, DREUILHE S, et al. High strain rate elasto-plasticity identification using the image-based inertial impact (IBII) test part 2: Experimental validation[J]. Strain, 2021, 57(2): e12374. |
46 | CHEN G, LU L P, REN C Z, et al. Temperature dependent negative to positive strain rate sensitivity and compression behavior for 2024-T351 aluminum alloy[J]. Journal of Alloys and Compounds, 2018, 765: 569-585. |
47 | BRUSH D O, ALMROTH B O, HUTCHINSON J W. Buckling of bars, plates, and shells[J]. Journal of Applied Mechanics, 1975, 42(4): 911. |
48 | LATTANZI A, BARLAT F, PIERRON F, et al. Inverse identification strategies for the characterization of transformation-based anisotropic plasticity models with the non-linear VFM[J]. International Journal of Mechanical Sciences, 2020, 173: 105422. |
49 | VAN BLITTERSWYK J, FLETCHER L, PIERRON F. Image-based inertial impact (IBII) tests for measuring the interlaminar shear moduli of composites[J]. Journal of Dynamic Behavior of Materials, 2020, 6(3): 373-398. |
[1] | Kaiming ZHANG, Kelu WANG, Shiqiang LU, Mutong LIU, Ping ZHONG, Ye TIAN. Thermal deformation behavior of S280 ultra-high strength stainless steel based on response surface methodology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427293-427293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341