Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (18): 228297-228297.doi: 10.7527/S1000-6893.2023.28297
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Yunwen FENG1, Xinyi LIN1, Xiaofeng XUE1(), Xiang YANG2, Jiaqi LIU1
Received:
2022-11-22
Revised:
2023-01-30
Accepted:
2023-03-03
Online:
2023-09-25
Published:
2023-03-03
Contact:
Xiaofeng XUE
E-mail:xuexiaofeng@nwpu.edu.cn
CLC Number:
Yunwen FENG, Xinyi LIN, Xiaofeng XUE, Xiang YANG, Jiaqi LIU. Design of civil aircraft explosion-proof structure for high reliable one-way blasting[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 228297-228297.
Table 9
Maximum plastic strain of each part of LRBL structure at 3 explosive positions
炸药位置 | 罐体体壁 | 相对 变化 | 罐体孔边 | 相对变化 | 罐体凸台 | 相对 变化 | 装填端盖凸台 | 相对 变化 | 装填端盖底部 | 相对变化 | 破坏端盖孔边 | 相对 变化 | 剪切销 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.024 | 0.195 | 0.059 | 0.051 | 0.109 | 0.023 | 0.2 | ||||||
2 | 0.233 | 870.8% | 0.206 | 5.64% | 0.151 | 155.9% | 0.073 | 43.1% | 0.045 | -142.2% | 0.030 | 30.4% | 0.2 |
3 | 0.152 | 533.3% | 0.242 | 24.1% | 0.241 | 308.4% | 0.235 | 360.8% | 0.167 | 53.2% | 0.033 | 43.5% | 0.2 |
Table 11
Maximum plastic strain at each hazardous part of different schemes
方案编号 | 罐体体壁 | 相对 变化 | 罐体孔边 | 相对 变化 | 罐体凸台 | 相对 变化 | 装填端盖凸台 | 相对 变化 | 装填端盖底部 | 相对变化 | 破坏端盖孔边 | 相对 变化 | 剪切销 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.152 | 0.242 | 0.241 | 0.235 | 0.167 | 0.033 | 0.2 | ||||||
2 | 0.052 | -65.8% | 0.116 | -52.1% | 0.218 | -9.5% | 0.097 | -58.7% | 0.093 | -44.3% | 0.118 | 257.6% | 0.2 |
3 | 0.053 | -65.1% | 0.124 | -48.8% | 0.103 | -57.3% | 0.082 | -65.1% | 0.068 | -59.3% | 0.121 | 266.7% | 0.2 |
4 | 0.056 | -63.2% | 0.052 | -78.5% | 0.080 | -66.8% | 0.080 | -66.0% | 0.062 | -62.9% | 0.113 | 242.4% | 0.2 |
5 | 0.056 | -63.2% | 0.115 | -52.5% | 0.038 | -84.2% | 0.028 | -88.1% | 0.036 | -78.4% | 0.086 | 160.6% | 0.2 |
Table 13
Reliability analysis input variable samples
序号 | 载荷 | 材料性能(Ti-6Al-4V) | |
---|---|---|---|
TNT当量/g | 弹性模量/GPa | 屈服强度/GPa | |
1 | 231.734 1 | 93.611 2 | 0.943 9 |
2 | 239.308 0 | 110.388 8 | 0.860 7 |
3 | 207.301 0 | 102.640 9 | 0.956 1 |
4 | 235.317 4 | 100.034 9 | 1.015 3 |
5 | 224.682 6 | 101.359 1 | 0.932 1 |
6 | 215.697 2 | 96.714 2 | 0.986 7 |
7 | 220.692 0 | 98.560 1 | 0.969 7 |
8 | 228.265 9 | 107.285 8 | 0.906 3 |
9 | 252.699 0 | 103.965 1 | 0.919 9 |
10 | 244.302 8 | 105.439 9 | 0.889 3 |
11 | 229.134 6 | 103.625 1 | 0.929 1 |
12 | 242.897 3 | 96.133 2 | 0.909 9 |
13 | 202.952 5 | 104.314 2 | 0.959 3 |
14 | 234.397 2 | 111.995 8 | 0.953 0 |
15 | 225.602 8 | 102.964 5 | 0.883 9 |
16 | 214.125 2 | 106.766 4 | 0.935 1 |
17 | 217.102 7 | 105.048 6 | 0.923 0 |
18 | 227.390 2 | 101.035 5 | 0.973 5 |
19 | 257.047 5 | 101.680 2 | 0.981 9 |
20 | 245.874 8 | 99.685 8 | 0.992 1 |
21 | 210.134 5 | 105.852 6 | 0.894 1 |
22 | 249.865 5 | 97.233 6 | 0.946 9 |
23 | 232.609 8 | 98.147 4 | 0.845 9 |
24 | 223.738 1 | 98.951 4 | 0.870 3 |
25 | 230.865 4 | 92.004 2 | 0.940 9 |
26 | 219.575 3 | 109.341 6 | 1.030 1 |
27 | 221.750 9 | 102.319 8 | 0.902 5 |
28 | 240.424 7 | 100.374 9 | 0.966 1 |
29 | 236.261 9 | 107.866 8 | 0.916 7 |
30 | 238.249 1 | 94.658 4 | 1.005 7 |
Table 14
Reliability analysis output variable samples
序号 | 罐体 | 装填端端盖 | 破坏端盖 孔边Y6 | 剪切销Y7 | |||
---|---|---|---|---|---|---|---|
体壁Y1 | 孔边Y2 | 凸台Y3 | 凸台Y4 | 底部Y5 | |||
1 | 0.061 0 | 0.052 5 | 0.075 7 | 0.080 0 | 0.061 8 | 0.125 | 0.2 |
2 | 0.030 9 | 0.060 1 | 0.099 2 | 0.082 5 | 0.067 5 | 0.122 | 0.2 |
3 | 0.034 6 | 0.053 3 | 0.060 4 | 0.063 5 | 0.047 4 | 0.146 | 0.2 |
4 | 0.048 9 | 0.040 4 | 0.073 6 | 0.076 5 | 0.056 4 | 0.106 | 0.2 |
5 | 0.057 8 | 0.062 9 | 0.074 3 | 0.073 3 | 0.057 5 | 0.125 | 0.2 |
6 | 0.035 4 | 0.049 3 | 0.064 9 | 0.069 4 | 0.049 7 | 0.12 | 0.2 |
7 | 0.047 4 | 0.057 9 | 0.071 0 | 0.072 7 | 0.054 7 | 0.124 | 0.2 |
8 | 0.055 1 | 0.053 8 | 0.080 7 | 0.078 1 | 0.062 2 | 0.131 | 0.2 |
9 | 0.040 6 | 0.050 8 | 0.101 0 | 0.087 2 | 0.071 7 | 0.126 | 0.2 |
10 | 0.036 0 | 0.051 9 | 0.094 0 | 0.085 8 | 0.070 6 | 0.131 | 0.2 |
11 | 0.059 7 | 0.051 3 | 0.079 2 | 0.077 0 | 0.061 0 | 0.122 | 0.2 |
12 | 0.030 8 | 0.049 1 | 0.087 3 | 0.084 5 | 0.067 6 | 0.126 | 0.2 |
13 | 0.029 4 | 0.051 7 | 0.058 7 | 0.062 6 | 0.046 9 | 0.137 | 0.2 |
14 | 0.043 0 | 0.050 5 | 0.079 1 | 0.076 3 | 0.060 2 | 0.115 | 0.2 |
15 | 0.061 0 | 0.058 1 | 0.079 1 | 0.075 0 | 0.059 4 | 0.135 | 0.2 |
16 | 0.036 4 | 0.070 3 | 0.068 7 | 0.068 3 | 0.053 0 | 0.127 | 0.2 |
17 | 0.033 5 | 0.057 3 | 0.072 4 | 0.070 9 | 0.055 7 | 0.139 | 0.2 |
18 | 0.054 9 | 0.054 4 | 0.070 6 | 0.072 7 | 0.055 5 | 0.117 | 0.2 |
19 | 0.029 3 | 0.045 0 | 0.093 9 | 0.087 6 | 0.070 2 | 0.119 | 0.2 |
20 | 0.031 5 | 0.043 8 | 0.084 7 | 0.084 9 | 0.065 4 | 0.113 | 0.2 |
21 | 0.033 3 | 0.055 0 | 0.065 5 | 0.065 2 | 0.050 1 | 0.142 | 0.2 |
22 | 0.039 3 | 0.049 2 | 0.094 8 | 0.088 6 | 0.071 7 | 0.123 | 0.2 |
23 | 0.064 2 | 0.064 3 | 0.088 1 | 0.083 8 | 0.068 1 | 0.143 | 0.2 |
24 | 0.053 8 | 0.061 6 | 0.079 8 | 0.075 8 | 0.060 7 | 0.148 | 0.2 |
25 | 0.059 4 | 0.053 9 | 0.077 4 | 0.080 9 | 0.062 7 | 0.126 | 0.2 |
26 | 0.041 7 | 0.055 1 | 0.064 2 | 0.066 0 | 0.048 8 | 0.107 | 0.2 |
27 | 0.050 8 | 0.067 0 | 0.076 0 | 0.073 7 | 0.058 8 | 0.135 | 0.2 |
28 | 0.028 2 | 0.045 9 | 0.081 8 | 0.081 2 | 0.063 0 | 0.118 | 0.2 |
29 | 0.054 4 | 0.051 1 | 0.081 4 | 0.078 8 | 0.062 7 | 0.129 | 0.2 |
30 | 0.025 8 | 0.047 6 | 0.077 6 | 0.082 1 | 0.062 4 | 0.116 | 0.2 |
1 | FAA. FAR Part 25 amendment No: 25-127: Security considerations requirements for transport gategory airplanes [S]. Washing,D. C. : FAA, 2008. |
2 | FAA. AC25. 795-6: Least risk bomb location [S]. Washington, D. C. : FAA, 2008. |
3 | 陆鹏, 郭忠宝, 杨超. 民用飞机最小风险炸弹位置适航符合性验证方法研究[J]. 民用飞机设计与研究, 2016(4): 6-12. |
LU P, GUO Z B, YANG C. Verification method investigation of airworthiness compliance for civil aircraft least risk bomb location design[J]. Civil Aircraft Design & Research, 2016(4): 6-12 (in Chinese). | |
4 | 冯振宇, 周书婷, 李恒晖, 等. 运输类飞机“最小风险炸弹位置”的研究进展[J]. 航空工程进展, 2018, 9(3): 316-325. |
FENG Z Y, ZHOU S T, LI H H, et al. Research progress on the “least risk bomb location” (LRBL) for transport aircraft[J]. Advances in Aeronautical Science and Engineering, 2018, 9(3): 316-325 (in Chinese). | |
5 | 刘宗兴, 刘军, 李维娜. 爆炸冲击载荷下典型机身结构动响应及破坏[J]. 航空学报, 2021, 42(2): 224252. |
LIU Z X, LIU J, LI W N. Dynamic response and failure of typical fuselage structure under blast impact load[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224252 (in Chinese). | |
6 | 冯振宇, 傅博宇, 解江, 等. 爆炸冲击载荷下机身壁板的动态响应[J]. 航空学报, 2022, 43(6): 525513. |
FENG Z Y, FU B Y, XIE J, et al. Dynamic response of fuselage panel under explosive impact load[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 523513 (in Chinese). | |
7 | BURNS G, BAYANDOR J. Analysis and modeling of explosive containment box for aircraft In-flight protection[C]∥ 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virginia: AIAA, 2011: 802. |
8 | COSTAIN A, BAYANDOR J. Analysis of a novel mobile aircraft explosive containment unit[C]∥ 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2014: 0691. |
9 | 苏培刚, 陈剑平, 殷国祥, 等. 航空餐车内置式防爆罐抗爆性能的数值模拟[J]. 消防科学与技术, 2020, 39(4): 460-464. |
SU P G, CHEN J P, YIN G X, et al. Numerical simulation of blast resistant characteristics for the anti-explosion container built in airline cart[J]. Fire Science and Technology, 2020, 39(4): 460-464 (in Chinese). | |
10 | YAO S J, ZHANG D, LU F. Dimensionless numbers for dynamic response analysis of clamped square plates subjected to blast loading[J].Archive of Applied Mechanics, 2015, 85(6):735-744. |
11 | CHOI Y, LEE J. Influence of explosive weight and steel thickness on behavior of steel plates[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(3): 471-477. |
12 | GHARABABAEI H, DARVIZEH A, DARVIZEH M. Analytical and experimental studies for deformation of circular plates subjected to blast loading[J]. Journal of Mechanical Science and Technology, 2010, 24(9): 1855-1864. |
13 | GERETTO C, CHUNG KIM YUEN S, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading[J]. International Journal of Impact Engineering, 2015, 79: 32-44. |
14 | SPRANGHERS K, VASILAKOS I, LECOMPTE D, et al. Numerical simulation and experimental validation of the dynamic response of aluminum plates under free air explosions[J]. International Journal of Impact Engineering, 2013, 54: 83-95. |
15 | 施兴华, 张婧, 王善. 水下接触爆炸载荷作用下多层板壳破坏概率分析[J]. 弹道学报, 2009, 21(1): 1-4, 18. |
SHI X H, ZHANG J, WANG S. Destroy probability of multilayer plate-shell structure subjected to underwater contact explosions[J]. Journal of Ballistics, 2009, 21(1): 1-4, 18 (in Chinese). | |
16 | IMAI K, FRANGOPOL D. Geometrically nonlinear finite element reliability analysis of structural systems. I: theory[J]. Computers & Structures, 2000, 77(6): 677-691. |
17 | 李万, 张志华, 李华, 等. 水下爆炸载荷作用下水下目标结构的可靠性研究[J]. 高压物理学报, 2014, 28(3): 324-330. |
LI W, ZHANG Z H, LI H, et al. Reliability on underwater target structure subjected to underwater explosion[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 324-330 (in Chinese). | |
18 | 陈卫东, 陈浩, 于艳春. 爆炸载荷作用下弹性结构动力可靠性研究[J]. 振动与冲击, 2012, 31(22): 118-122. |
CHEN W D, CHEN H, YU Y C. Dynamical reliability of an elastic structure subjected to explosion[J]. Journal of Vibration and Shock, 2012, 31(22): 118-122 (in Chinese). | |
19 | 陈卫东, 陈浩, 张帆. 水下爆炸载荷作用下圆筒的可靠性研究[J]. 哈尔滨工业大学学报, 2011, 43(S1): 192-197. |
CHEN W D, CHEN H, ZHANG F. Reliability on cylinder structure subjected to underwater explosion[J]. Journal of Harbin Institute of Technology, 2011, 43(S1): 192-197 (in Chinese). | |
20 | LOW H Y, HAO H. Reliability analysis of direct shear and flexural failure modes of RC slabs under explosive loading[J]. Engineering Structures, 2002, 24(2): 189-198. |
21 | EAMON C D. Reliability of concrete masonry unit walls subjected to explosive loads[J]. Journal of Structural Engineering, 2007, 133(7): 935-944. |
22 | LOW H Y, HAO H. Reliability analysis of reinforced concrete slabs under explosive loading[J]. Structural Safety, 2001, 23(2): 157-178. |
23 | 李琳娜, 钟东望, 黄小武, 等. 基于动态预测的深水爆炸试验容器可靠性分析[J]. 爆炸与冲击, 2021, 41(1): 114-121. |
LI L N, ZHONG D W, HUANG X W, et al. Reliability analysis of deepwater explosion test vessel based on dynamic prediction[J]. Explosion and Shock Waves, 2021, 41(1): 114-121 (in Chinese). | |
24 | BAI L, KALAJ D. Approximation of Kolmogorov-Smirnov test statistic[J]. Stochastics, 2021, 93(7): 993-1027. |
25 | MORA-LÓPEZ L, MORA J. An adaptive algorithm for clustering cumulative probability distribution functions using the Kolmogorov-Smirnov two-sample test[J]. Expert Systems with Applications, 2015, 42(8): 4016-4021. |
26 | 张雄, 陆明万, 王建军. 任意拉格朗日-欧拉描述法研究进展[J]. 计算力学学报, 1997, 14(1): 91-102. |
ZHANG X, LU M W, WANG J. Research progress in arbitrary Lagrangian Eulerian method[J]. Chinese Journal of Computational Mechanics, 1997, 14(1): 91-102 (in Chinese). | |
27 | LANGDON G S, OZINSKY A, CHUNG KIM YUEN S. The response of partially confined right circular stainless steel cylinders to internal air-blast loading[J]. International Journal of Impact Engineering, 2014, 73: 1-14. |
28 | 何涛. 流固耦合数值方法研究概述与浅析[J]. 振动与冲击, 2018, 37(4)184-190. |
HE T. Numerical solution techniques for fluid-structure interaction simulations: a brief review and discussion[J]. Journal of Vibration and Shock, 2018, 37(4)184-190 (in Chinese). | |
29 | 师义民, 徐伟, 秦超英. 数理统计[M]. 4版. 北京: 科学出版社, 2015: 118-125. |
SHI Y M, XU W, QIN C Y. Mathematical statistics[M]. 4th ed. Beijing: Science Press, 2015: 118-125 (in Chinese). | |
30 | 刘文珽. 结构可靠性设计手册[M]. 北京: 国防工业出版社, 2008: 475-478. |
LIU W T. Handbook of structural reliability design[M]. Beijing: National Defense Industry Press, 2008: 475-478 (in Chinese). | |
31 | 张骏华. 导弹与运载火箭之结构强度可靠性设计指南(金属结构部分)[M]. 北京: 宇航出版社, 1994: 3-4,98-101. |
ZHANG J H. Structural Strength and Reliability Design Guidelines for Missiles and Launch Vehicles (Metal Structure Section)[M]. Beijing: China Astronautic Publishing House, 1994: 3-4,98-101 (in Chinese). | |
32 | SEIDT J D, MICHAEL PEREIRA J, GILAT A, et al. Ballistic impact of anisotropic 2024 aluminum sheet and plate[J]. International Journal of Impact Engineering, 2013, 62: 27-34. |
33 | 辛春亮, 朱星宇, 薛再清. 有限元分析常用材料参数手册[M]. 2版. 北京: 机械工业出版社, 2022: 44,194-199. |
XIN C L, ZHU X Y, XUE Z Q. Handbook of common material parameters for finite element analysis[M]. 2nd ed. Beijing: China Machine Press, 2022: 44,194-199 (in Chinese). | |
34 | 周书婷. 爆炸冲击载荷下铝合金机身壁板结构响应及破坏模式研究[D]. 天津: 中国民航大学, 2008: 19-28. |
ZHOU S T. Study on structural response and failure mode of aluminum alloy fuselage panel under explosive impact load[D]. Tianjin: Civil Aviation University of China,2008 : 19-28. (in Chinese) | |
35 | 郑金国. 内爆载荷下铝合金机身结构动态响应数值仿真研究[D]. 天津: 中国民航大学,2017 : 14-16. |
ZHENG J G. Numerical simulation study on dynamic response of aluminum alloy fuselage structure under implosion load[D]. Tianjin: Civil Aviation University of China,2017 : 14-16. (in Chinese) | |
36 | 刘文祥, 张德志, 钟方平, 等. 球形爆炸容器内炸药爆炸形成的准静态气体压力[J]. 爆炸与冲击, 2018, 38(5): 1045-1050. |
LIU W X, ZHANG D Z, ZHONG F P, et al. Quasi-static gas pressure generated by explosive charge blasting in a spherical explosion containment vessel[J]. Explosion and Shock Waves, 2018, 38(5): 1045-1050 (in Chinese). | |
37 | 秦福光. 民机结构分析和设计-第1册-民机材料和结构性能数据手册[M]. 北京: 北京航空航天大学出版社, 2017: 134-155. |
QIN F G. Structural analysis and design of civil aircraft-volume 1-civil aircraft materials and structural performance data manual[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2017: 134-155 (in Chinese). | |
38 | 方开泰, 王元. 数论方法在统计中的应用[M]. 北京: 科学出版社, 1996: 222-224. |
FANG K T, WANG Y. Application of number theory method in statistics[M]. Beijing: Science Press, 1996: 222-224 (in Chinese). |
[1] | Yulian GONG, Jianguo ZHANG, Zhigang WU, Guangyuan CHU, Xiaoduo FAN, Ying HUANG. Reliability algorithm of composite structure based on active learning basis-adaptive PC-Kriging model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 228982-228982. |
[2] | Fan ZHANG, Bohan CHENG, Peng WANG, Lei DONG. A two-stage degradation model and reliability analysis related to degradation of binary load-sharing systems [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 229046-229046. |
[3] | Junfu LI, Qing CHEN, Wei WANG, Zhonghua HAN, Yuting TAN, Yulin DING, Lu XIE, Jianling QIAO, Ke SONG, Junqiang AI. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613-629613. |
[4] | Xiaochuan LIU, Xulong XI, Xinyue ZHANG, Chunyu BAI, Yabin YAN, Xiaocheng LI, Rangke MU. Full⁃scale crash experimental study of typical civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529664-529664. |
[5] | Rui SI, Yong CHEN. Application trends of additive manufacturing technology for civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529677-529677. |
[6] | Meng LI, Xingyi CHEN, Jichang CHEN, Bin WU, Mingbo TONG. Numerical analysis of civil aircraft ditching performance in wave condition [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 28-43. |
[7] | Weihong ZHANG, Han ZHOU, Shaoying LI, Jihong ZHU, Lu ZHOU. Material⁃structure integrated design for high⁃performance aerospace thin⁃walled component [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627428-627428. |
[8] | Chunpeng LI, Zhansen QIAN, Xiasheng SUN. Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 127335-127335. |
[9] | Fan ZHANG, Zijing SUN, Guosong XIAO, Jiachen LIU, Peng WANG. Reliability analysis for multi-phased mission of HUD system based on intuitionistic fuzzy Bayesian network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 226853-226853. |
[10] | Lechang YANG, Chenxing WANG. Parameter calibration and reliability analysis of an aero-engine rotor based on multi-source heterogeneous information [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 228575-228575. |
[11] | Xuhan ZHANG, Yi CAO, Jingnan SUN, Shunzhi PAN. Comparative study on weight analysis methods of cabin air parameters in civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 228480-228480. |
[12] | Feng JIANG, Huacong LI, Jiangfeng FU, Linxiong HONG. A RBF and active learning combined method for structural non-probabilistic reliability analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 226667-226667. |
[13] | Di WANG, Yan LENG, Long YANG, Zhonghua HAN, Zhansen QIAN. Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626318-626318. |
[14] | Qing GUO, Deming GUAN. Human factor reliability prediction model for civil aircraft maintenance task analysis [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 228051-228051. |
[15] | Wenhao BI, Qiucen FAN, Delin LI, An ZHANG. Modeling approach for forward design of civil aircraft based on multiple perspectives [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 227536-227536. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341