Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (13): 327895-327895.doi: 10.7527/S1000-6893.2023.27895
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Lei DONG1,2,3, Hongbing CHEN2,3, Xi CHEN1,2,3, Changxiao ZHAO1,2,3()
Received:
2022-08-03
Revised:
2022-11-30
Accepted:
2023-02-23
Online:
2023-07-15
Published:
2023-03-10
Contact:
Changxiao ZHAO
E-mail:zhaochangxiao@yeah.net
Supported by:
CLC Number:
Lei DONG, Hongbing CHEN, Xi CHEN, Changxiao ZHAO. Distributed multi-agent coalition task allocation strategy for single pilot operation mode based on DQN[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 327895-327895.
Table 2
Initial settings of tasks
任务 | 类型 | Task j | numAgent j | |||
---|---|---|---|---|---|---|
1 | 飞行航路联合监视及感知 | 20 | [0.2,0.18,0.18,0.2,0.18] | 0.4 | 4 | [0,4][ |
2 | 严酷天气识别及确认 | 18 | [0.2,0.22,0.2,0.18,0.18] | 0.4 | 3 | [ |
3 | 提前规划恶劣气象环境的优化路径 | 19 | [0.16,0.2,0.2,0.2,0.2] | 0.4 | 4 | [ |
4 | 基于4D航迹的飞行航路机动调整 | 18 | [0.22,0.2,0.22,0.2,0.2] | 0.4 | 3 | [33,36][36,38][38,42] |
5 | 自主巡航 | 12 | [0.18,0.22,0.22,0.18,0.18] | 0.4 | 2 | [42,44][44,47] |
6 | 空地交联的协同决策 | 17 | [0.2,0.16,0.16,0.2,0.2] | 0.4 | 3 | [47,49][49,51][51,54] |
Table 7
Descriptive analysis of target values
任务 | 方法 | 最大值 | 最小值 | 标准差 | 发散系数/10-6 |
---|---|---|---|---|---|
1 | DQN | 2.710 | 2.264 | 0.136 5 | 5.397 |
Q-Learning | 2.541 | 2.051 | 0.137 4 | 12.385 | |
2 | DQN | 2.251 | 1.998 | 0.066 4 | 1.425 |
Q-Learning | 2.163 | 1.917 | 0.079 2 | 1.642 | |
3 | DQN | 2.383 | 2.119 | 0.079 4 | 1.450 |
Q-Learning | 2.275 | 2.015 | 0.085 7 | 1.541 | |
4 | DQN | 2.334 | 2.171 | 0.057 5 | 0.190 |
Q-Learning | 2.177 | 2.008 | 0.064 1 | 0.253 | |
5 | DQN | 1.942 | 1.825 | 0.034 6 | 0.128 |
Q-Learning | 1.865 | 1.730 | 0.036 3 | 0.264 | |
6 | DQN | 2.258 | 2.075 | 0.050 8 | 0.425 |
Q-Learning | 1.934 | 1.725 | 0.052 2 | 1.330 |
1 | 王淼, 肖刚, 王国庆. 单一飞行员驾驶模式技术[J]. 航空学报, 2020, 41(4): 323541. |
WANG M, XIAO G, WANG G Q. Single pilot operation mode technology[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 323541 (in Chinese). | |
2 | LUO Y, WANG M, CHEN Y, et al. TFCluster: An efficient algorithm to mine maximal differential function-resource biclusters for single pilot operations safety analysis[C]∥ 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2021: 1-6. |
3 | BILIMORIA K D, JOHNSON W W, SCHUTTE P C. Conceptual framework for single pilot operations[C]∥ Proceedings of the International Conference on Human-Computer Interaction in Aerospace. New York: ACM, 2014: 1-8. |
4 | STANTON N A, HARRIS D, STARR A. Modelling and analysis of single pilot operations in commercial aviation[C]∥ Proceedings of the International Conference on Human-Computer Interaction in Aerospace. New York: ACM, 2014: 1–8. |
5 | NEIS S M, KLINGAUF U, SCHIEFELE J. Classification and review of conceptual frameworks for commercial single pilot operations[C]∥ 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2018: 1-8. |
6 | 陈璞, 严飞, 刘钊, 等. 通信约束下异构多无人机任务分配方法[J]. 航空学报, 2021, 42(8): 525844. |
CHEN P, YAN F, LIU Z, et al. Communication-constrained task allocation of heterogeneous UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525844 (in Chinese). | |
7 | 柳平, 胡孟权, 胡文东, 等. 作战飞机人机功能分配方法[J]. 火力与指挥控制, 2012, 37(12): 19-22. |
LIU P, HU M Q, HU W D, et al. Search after methods of man-machine function allocation of combat aircraft[J]. Fire Control & Command Control, 2012, 37(12): 19-22 (in Chinese). | |
8 | JOHNSON A W, OMAN C M, SHERIDAN T B, et al. Dynamic task allocation in operational systems: Issues, gaps, and recommendations[C]∥ 2014 IEEE Aerospace Conference. Piscataway: IEEE Press, 2014: 1-15. |
9 | HARRIS D, STANTON N A, STARR A. Spot the difference: Operational event sequence diagrams as a formal method for work allocation in the development of single-pilot operations for commercial aircraft[J]. Ergonomics, 2015, 58(11): 1773-1791. |
10 | HUDDLESTONE J, SEARS R, HARRIS D. The use of operational event sequence diagrams and work domain analysis techniques for the specification of the crewing configuration of a single-pilot commercial aircraft[J]. Cognition, Technology and Work, 2017, 19(2-3): 289–302. |
11 | DORNEICH M C, PASSINGER B, HAMBLIN C, et al. Evaluation of the display of cognitive state feedback to drive adaptive task sharing[J]. Frontiers in Neuroscience, 2017, 11: 144. |
12 | 张安, 任卫, 汤志荔, 等. 基于CTL模型和任务绩效的驾驶舱动态功能分配方法[J]. 火力与指挥控制, 2018, 43(7): 151-156. |
ZHANG A, REN W, TANG Z L, et al. Dynamic function allocation for cockpit based on CTL model and task performance[J]. Fire Control & Command Control, 2018, 43(7): 151-156 (in Chinese). | |
13 | 唐嘉钰, 李相民, 代进进, 等. 复杂约束条件下异构多智能体联盟任务分配[J]. 控制理论与应用, 2020, 37(11): 2413-2422. |
TANG J Y, LI X M, DAI J J, et al. Coalition task allocation of heterogeneous multiple agents with complex constraints[J]. Control Theory & Applications, 2020, 37(11): 2413-2422 (in Chinese). | |
14 | TOKADL G, DORNEICH M C, MATESSA M. Evaluation of playbook delegation approach in human-autonomy teaming for single pilot operations[J]. International Journal of Human-Computer Interaction, 2021, 37(7): 703-716. |
15 | SUN Y, WANG J, SUN Y, et al. Dynamic worker-and-task assignment on uncertain spatial crowdsourcing[C]∥ 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design (CSCWD). Piscataway: IEEE Press, 2018: 755-760. |
16 | HE M L, LI Y, WANG X F, et al. NOMA resource allocation method in IoV based on prioritized DQN-DDPG network[J]. EURASIP Journal on Advances in Signal Processing, 2021, 2021(1): 120. |
17 | HAN S, LI L, LI X B. Deep Q-network-based cooperative transmission joint strategy optimization algorithm for energy harvesting-powered underwater acoustic sensor networks[J]. Sensors, 2020, 20(22): 6519. |
18 | CHEN J J, GUO C L, FENG C Y, et al. Content driven and reinforcement learning based resource allocation scheme in vehicular network[C]∥ ICC 2021 - IEEE International Conference on Communications. Piscataway: IEEE Press, 2021: 1-6. |
19 | 刘冰雁, 叶雄兵, 周赤非, 等. 基于改进DQN的复合模式在轨服务资源分配[J]. 航空学报, 2020, 41(5): 323630. |
LIU B Y, YE X B, ZHOU C F, et al. Allocation of composite mode on-orbit service resource based on improved DQN[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 323630 (in Chinese). | |
20 | SUN Y, TAN W A. A trust-aware task allocation method using deep Q-learning for uncertain mobile crowdsourcing[J]. Human-Centric Computing and Information Sciences, 2019, 9(1): 1-27. |
21 | SUN Y H, PENG M G, MAO S W. Deep reinforcement learning-based mode selection and resource management for green fog radio access networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1960-1971. |
22 | 罗庆, 张涛, 单鹏, 等. 基于改进Q学习的IMA系统重构蓝图生成方法[J]. 航空学报, 2021, 42(8): 525792. |
LUO Q, ZHANG T, SHAN P, et al. Generating reconfiguration blueprints for IMA systems based on improved Q-learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525792 (in Chinese). | |
23 | JI J J, GUO Y N, GAO X Z, et al. Q-learning-based hyperheuristic evolutionary algorithm for dynamic task allocation of crowdsensing[J/OL]. IEEE Transactions on Cybernetics, (2021-10-04)[2022-08-03]. . |
24 | ZHENG T, WAN J, ZHANG J L, et al. Deep reinforcement learning-based workload scheduling for edge computing[J]. Journal of Cloud Computing, 2022, 11(1): 3. |
25 | ZITOUNI F, MAAMRI R. Cooperative learning-agents for task allocation problem[C]∥Interactive Mobile Communication, Technologies and Learning. Berlin: Springer, 2018: 952-968. |
26 | ZHU P X, FANG X. Multi-UAV cooperative task assignment based on half random Q-learning[J]. Symmetry, 2021, 13(12): 2417. |
[1] | Honglin ZHANG, Jianjun LUO, Weihua MA. Spacecraft game decision making for threat avoidance of space targets based on machine learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329136-329136. |
[2] | Fei MA, Qiong ZHANG, Peijun LAI, Yidi YUE. BP neural network⁃based quantitative classification model for safety in experimental flight training [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529957-529957. |
[3] | Yunpeng CAI, Dapeng ZHOU, Jiangchuan DING. Intelligent collaborative control of UAV swarms with collision avoidance safety constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529683-529683. |
[4] | Yude NI, Miaoyu YAN, Ruihua LIU. Short-term prediction of ionospheric TEC based on DOA-BP neural network [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328707-328707. |
[5] | Shengzhe SHAN, Weiwei ZHANG. Air combat intelligent decision-making method based on self-play and deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328723-328723. |
[6] | Xuejian WANG, Yongming WEN, Xiaorong SHI, Ningning ZHANG, Jiexi LIU. Design of hybrid intelligent decision framework for multi⁃agent and multi⁃coupling tasks [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729770-729770. |
[7] | Zhongzhi LI, Jinyi MA, Jianliang AI, Yiqun DONG. Fault detection and classification of aerospace sensors using deep neural networks finetuned from VGG16 [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727615-727615. |
[8] | Zhilin FAN, Hongyong YANG, Yilin HAN. Target round-up control for multi-agent systems based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727487-727487. |
[9] | Wu LIU, Yunyan WU, Wei LIU, Mingming TIAN, Tianpeng HUANG. Re-entry robust fault tolerant attitude control for RLVs considering unknown disturbances [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727787-727787. |
[10] | Chenyang LIU, Dawei WU, Yize GUO, Xinsai LV, Jiani ZHOU, Shuyi SHAO. Robust adaptive attitude control of quadrotor with uncertain strong coupling [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727645-727645. |
[11] | Yajie MA, Juan WANG, Bin JIANG, Jianye GONG. A fault⁃tolerant control scheme for UAVs-UGVs formation systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 327216-327216. |
[12] | An ZHANG, Mi YANG, Wenhao BI, Baichuan ZHANG, Yunong WANG. Task allocation of heterogeneous multi-UAVs in uncertain environment based on multi-strategy integrated GWO [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 327115-327115. |
[13] | Xizhen GAO, Liang TANG, Huang HUANG. Deep reinforcement learning in autonomous manipulation for celestial bodies exploration: Applications and challenges [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 26762-026762. |
[14] | Zhikai WANG, Sheng CHEN, Wei FAN. Effect of neural network width on combustor emission prediction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126816-126816. |
[15] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341