ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (5): 126816-126816.doi: 10.7527/S1000-6893.2022.26816
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Zhikai WANG1,2(), Sheng CHEN1, Wei FAN2
Received:
2021-12-14
Revised:
2021-12-30
Accepted:
2022-01-10
Online:
2023-03-15
Published:
2022-01-18
Contact:
Zhikai WANG
E-mail:nhwzk12@126.com
Supported by:
CLC Number:
Zhikai WANG, Sheng CHEN, Wei FAN. Effect of neural network width on combustor emission prediction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126816-126816.
1 | DHANUKA S K, TEMME J E, DRISCOLL J F. Unsteady aspects of lean premixed prevaporized gas turbine combustors: Flame-flame interactions[J]. Journal of Propulsion and Power, 2011, 27(3): 631-641. |
2 | HEATH C M. Characterization of swirl-venturi lean direct injection designs for aviation gas turbine combustion[J]. Journal of Propulsion and Power, 2014, 30(5): 1334-1356. |
3 | CHEN J, LI J Z, YUAN L, et al. Flow and flame characteristics of a RP-3 fuelled high temperature rise combustor based on RQL[J]. Fuel, 2019, 235: 1159-1171. |
4 | MONGIA H. TAPS: A fourth generation propulsion combustor technology for low emissions[C]∥ AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003. |
5 | WANG Z K, ZENG Z X, LI K, et al. Effect of structure parameters of the flow guide vane on cold flow characteristics in trapped vortex combustor[J]. Journal of Hydrodynamics, Ser B, 2015, 27(5): 730-737. |
6 | DENG Y B, WU H W, SU F M. Combustion and exhaust emission characteristics of low swirl injector[J]. Applied Thermal Engineering, 2017, 110: 171-180. |
7 | ZHANG C, HUI X, LIN Y Z, et al. Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 120-138. |
8 | LI J Z, YUAN L, MONGIA H C. Simulation of combustion characteristics in a hydrogen fuelled lean single-element direct injection combustor[J]. International Journal of Hydrogen Energy, 2017, 42(5): 3536-3548. |
9 | MEZIANE S, BENTEBBICHE A. Numerical study of blended fuel natural gas-hydrogen combustion in rich/quench/lean combustor of a micro gas turbine[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15610-15621. |
10 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese). | |
11 | 范周伟, 余雄庆, 王朝, 等. 基于深度神经网络的客机总体设计参数敏感性分析[J]. 航空学报, 2021, 42(4): 524353. |
FAN Z W, YU X Q, WANG C, et al. Sensitivity analysis of key design parameters of commercial aircraft using deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524353 (in Chinese). | |
12 | AGHBASHLO M, PENG W X, TABATABAEI M, et al. Machine learning technology in biodiesel research: A review[J]. Progress in Energy and Combustion Science, 2021, 85: 100904. |
13 | KOU J Q, ZHANG W W. Data-driven modeling for unsteady aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 125: 100725. |
14 | ZHOU L, SONG Y T, JI W Q, et al. Machine learning for combustion[J]. Energy and AI, 2022, 7: 100128. |
15 | FU J H, YANG R M, LI X, et al. Application of artificial neural network to forecast engine performance and emissions of a spark ignition engine[J]. Applied Thermal Engineering, 2022, 201: 117749. |
16 | AZZAM M, AWAD M, ZEAITER J. Application of evolutionary neural networks and support vector machines to model NOx emissions from gas turbines[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1044-1052. |
17 | BENDU H, DEEPAK B, MURUGAN S. Application of GRNN for the prediction of performance and exhaust emissions in HCCI engine using ethanol[J]. Energy Conversion and Management, 2016, 122: 165-173. |
18 | WANG G Y, AWAD O I, LIU S Y,et al. NOx emissions prediction based on mutual information and back propagation neural network using correlation quantitative analysis[J]. Energy, 2020, 198: 117286. |
19 | 赵刚, 朱华昕, 李苏辉, 等. 基于数据和神经网络的燃气轮机NOx排放预测与优化[J]. 动力工程学报, 2021, 41(1): 22-27. |
ZHAO G, ZHU H X, LI S H, et al. NOx emission prediction and optimization for gas turbines based on data and neural network[J]. Journal of Chinese Society of Power Engineering, 2021, 41(1): 22-27 (in Chinese). | |
20 | KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814: 1-4. |
21 | LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166. |
22 | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
23 | DUFERA T T. Deep neural network for system of ordinary differential equations: Vectorized algorithm and simulation[J]. Machine Learning with Applications, 2021, 5: 100058. |
24 | BOUWMANS T, JAVED S, SULTANA M, et al. Deep neural network concepts for background subtraction: A systematic review and comparative evaluation[J]. Neural Networks, 2019, 117: 8-66. |
25 | CHEN C L P, LIU Z L. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24. |
26 | LU Z, PU H, WANG F,et al. The expressive power of neural networks:A view from the width[C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017:6231-6239. |
27 | FUJITA O. Statistical estimation of the number of hidden units for feedforward neural networks[J]. Neural Networks, 1998, 11(5): 851-859. |
28 | SHEELA K G, DEEPA S N. Review on methods to fix number of hidden neurons in neural networks[J]. Mathematical Problems in Engineering, 2013, 2013: 425740. |
29 | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. |
30 | BA L M, XIONG X Y, YANG Z B, et al. A novel multi-physics and multi-dimensional model for solid oxide fuel cell stacks based on alternative mapping of BP neural networks[J]. Journal of Power Sources, 2021, 500: 229784. |
31 | LIANG W, WANG G W, NING X J, et al. Application of BP neural network to the prediction of coal ash melting characteristic temperature[J]. Fuel, 2020, 260: 116324. |
32 | HAN Z Z, MOINUL HOSSAIN M, WANG Y W, et al. Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network[J]. Applied Energy, 2020, 259: 114159. |
33 | HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366. |
34 | 成科扬, 王宁, 师文喜, 等. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208-1217. |
CHENG K Y, WANG N, SHI W X, et al. Research advances in the interpretability of deep learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208-1217 (in Chinese). | |
35 | 纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10): 2071-2096. |
JI S L, LI J F, DU T Y, et al. Survey on techniques, applications and security of machine learning interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096 (in Chinese). | |
36 | PAHLAVAN R. Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production[J]. Energy, 2012, 37(1): 171-176. |
37 | LEFEBVRE A H. Gas turbine combustion[M]. New York: Hemisphere Publishing Corporation,1983. |
[1] | Le JIANG, Yibiao CHEN, Yanjun LI, Guilin LI, Tao LIU. Flow and separation characteristics of pressurized centrifugal separator for aero⁃engine [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128675-128675. |
[2] | Bowei MENG, Hu MA, Zhenjuan XIA, Changsheng ZHOU. Numerical study on characterization of integrated rotating detonation combustor and turbine guide vane [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129223-129223. |
[3] | Kailing ZHANG, Siyi LI, Yi DUAN, Chao YAN. Uncertainty quantification of parameters in SST turbulence model for inlet simulation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729429-729429. |
[4] | Xiaozhe SUN, Dong HOU, Jianzhong YANG. Mechanism and sensitivity of force fight in dual redundant electromechanical actuators [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727661-727661. |
[5] | Weiping LI, Longjin YANG. Cooling performance analysis of combustion liner in reverse-flow combustor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 127326-127326. |
[6] | Zhichuang CHEN, Shenghong GE, Zhuolei ZHANG, Yuchuan ZHU. Internal leakage distribution model and parameter sensitivity analysis of spool valve couple at zero position [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 427004-427004. |
[7] | Kailong XU, Zaigang LIU, Shengli JIANG, Xing WANG, Pan ZHANG. Treatment of boundary condition at multiple outlets with recirculating flow and specified flow ratios [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126830-126830. |
[8] | Zhihao LI, Biao ZHANG, Jian LI, Chuanlong XU, Zhaolong SONG. Reconstruction of three-dimensional refractive index field of premixed swirl combustion flame [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126480-126480. |
[9] | Bin WANG, Jianjun ZHENG, Wei LIU, Gaoli WANG. Testing load transacting method based on assessment target equivalent [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 228064-228064. |
[10] | Zhenkang ZHANG, Wanwu XU, Zhiyan LI, Wei YE. Uncertainty quantification analysis of blunt cone radiation equilibrium temperature [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528673-528673. |
[11] | Xiaofeng SUN, Guangyu ZHANG, Xiaoyu WANG, Lei LI, Xiangyang DENG, Ronghui CHENG. Research progress in aero-engine combustion instability prediction and control [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628733-628733. |
[12] | Bowen SHU, Jiangtao HUANG, Zhenghong GAO, Gang LIU, Chengjun HE, Lu XIA. Sensitivity analysis of vector performance of two⁃dimensional shock vector control nozzle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127831-127831. |
[13] | Wanying YUN, Zhenzhou LYU. An efficient surrogate method for analyzing parameter global reliability sensitivity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 227670-227670. |
[14] | Muchen WU, Jiangtao CHEN, Tangfan XIAHOU, Wei ZHAO, Yu LIU. Separating sensitivity analysis of aleatory and epistemic uncertainties in non-parametric probability-box [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 226658-226658. |
[15] | Haoge LI, Hua YANG, Yuxin YANG, Weifang CHEN. Refinement optimization design for heat reduction on windward surface of hypersonic lifting body [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 124-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341