1 |
李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检测算法综述[J]. 计算机工程, 2022, 48(7): 1-12.
|
|
LI K Q, CHEN Y, LIU J C, et al. Survey of deep learning-based object detection algorithms[J]. Computer Engineering, 2022, 48(7): 1-12 (in Chinese).
|
2 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
|
3 |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
|
4 |
GIRSHICK R. Fast R-CNN[C]∥ 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2016: 1440-1448.
|
5 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 779-788.
|
7 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]∥European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
|
8 |
李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报, 2021, 42(7): 024691.
|
|
LI H G, YU R N, DING W R. Research development of small object traching based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024691 (in Chinese).
|
9 |
REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 6517-6525.
|
10 |
REDMON J, FARHADI A. YOLOv3: An incremental improvement[DB/OL]. arXiv preprint: 1804.02767, 2018.
|
11 |
BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: Optimal speed and accuracy of object detection[DB/OL]. arXiv preprint: 2004.10934, 2020.
|
12 |
JOCHER G, NISHIMURA K, MINEEVA T, et al. YOLOv5[EB/OL]. 2020. .
|
13 |
GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[DB/OL]. arXiv preprint: 2107. 08430, 2021.
|
14 |
江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报, 2021, 42(4): 524519.
|
|
JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524519 (in Chinese).
|
15 |
葛泉波, 张建朝, 杨秦敏, 等. 带有微分项改进的自适应梯度下降优化算法[J]. 控制理论与应用, 2022, 39(4): 623-632.
|
|
GE Q B, ZHANG J C, YANG Q M, et al. Adaptive gradient descent optimization algorithm with improved differential term[J]. Control Theory & Applications, 2022, 39(4): 623-632 (in Chinese).
|
16 |
SINHA N K, GRISCIK M P. A stochastic approximation method[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1971, SMC-1(4): 338-344.
|
17 |
杨晗. 深度学习中一阶优化算法研究[D]. 北京: 北京邮电大学, 2021: 10-19.
|
|
YANG H. Research on first-order optimization algorithm in deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2021: 10-19 (in Chinese).
|
18 |
刘克刚. 基于二阶信息的优化算法[D]. 上海: 华东师范大学, 2020: 7-13.
|
|
LIU K G. Optimization algorithm based on second-order information[D]. Shanghai: East China Normal University, 2020: 7-13 (in Chinese).
|
19 |
DUCHI J C, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12: 2121-2159.
|
20 |
ZEILER M D. ADADELTA: An adaptive learning rate method[DB/OL]. arXiv preprint: 1212.5701, 2012.
|
21 |
GRAVES A. Generating sequences with recurrent neural networks[DB/OL]. arXiv preprint: 1308.0850, 2013.
|
22 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL]. arXiv preprint: 1412.6980, 2014.
|
23 |
LUO L C, XIONG Y H, LIU Y, et al. Adaptive gradient methods with dynamic bound of learning rate[DB/OL]. arXiv preprint: 1902.09843, 2019.
|
24 |
ZHUANG J, TANG T, DING Y, et al. Adabelief optimi-zer: Adapting stepsizes by the belief in observed gradients[J]. Advances in Neural Information Processing Systems, 2020, 33: 18795-18806.
|
25 |
SHAO Z, LIN T. A new adaptive gradient method with gradient decomposition[DB/OL]. arXiv preprint: 2107.08377, 2021.
|
26 |
ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: Beyond empirical risk minimization[DB/OL]. arXiv preprint: 1710.09412, 2017.
|
27 |
DUBEY S R, CHAKRABORTY S, ROY S K, et al. diffGrad: An optimization method for convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4500-4511.
|
28 |
ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11.
|
29 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥ IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE Press, 2018: 318-327.
|
30 |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
|
31 |
GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]∥Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 2011: 315-323.
|
32 |
XIAO Z F, LIU Q, TANG G F, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618-644.
|
33 |
SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]∥ Proceedings of the 30th International Conference on International Conference on Machine Learning-Volume 28. New York: ACM, 2013: III-1139-III.
|
34 |
LI C Y, LI L L, JIANG H L, et al. YOLOv6: A single-stage object detection framework for industrial applications[DB/OL]. arXiv preprint: 2209. 02976, 2022.
|
35 |
KRIZHEVSKY A. Learning multiple layers of features from tiny images: TR-2009[R]. Toronto: University of Toronto, 2009.
|
36 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[DB/OL]. arXiv preprint: 1409.1556, 2014.
|
37 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
|
38 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 2261-2269.
|