[1] 邹立岩, 张明智, 荣明. 智能无人机集群概念及主要发展趋势分析[J]. 战术导弹技术, 2019(5): 1-11, 43. ZOU L Y, ZHANG M Z, RONG M. Analysis of intelligent unmanned aircraft systems swarm concept and main development trend[J]. Tactical Missile Technology, 2019(5): 1-11, 43(in Chinese). [2] 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1): 723738. JIA Y N, TIAN S Y, LI Q. Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723738(in Chinese). [3] 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732. WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732(in Chinese). [4] 牛轶峰, 肖湘江, 柯冠岩. 无人机集群作战概念及关键技术分析[J]. 国防科技, 2013, 34(5): 37-43. NIU Y F, XIAO X J, KE G Y. Operation concept and key techniques of unmanned aerial vehicle swarms[J]. National Defense Science & Technology, 2013, 34(5): 37-43(in Chinese). [5] 李俊国. 蜂群式固定翼无人机空基回收系统设计及动力学分析[D]. 哈尔滨: 哈尔滨工业大学, 2017. LI J G. Design and dynamics analysis of air base recovery system for colony type fixed wing UAV[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese). [6] VENDRA S, CAMPA G, NAPOLITANO M R, et al. Addressing corner detection issues for machine vision based UAV aerial refueling[J]. Machine Vision and Applications, 2007, 18(5): 261-273. [7] DELL’AQUILA R V, CAMPA G, NAPOLITANO M R, et al. Real-time machine-vision-based position sensing system for UAV aerial refueling[J]. Journal of Real-Time Image Processing, 2007, 1(3): 213-224. [8] HARRIS C, STEPHENS M. A combined corner and edge detector[C]//Proceedings ofthe Alvey Vision Conference, 1988: 147-151. [9] SMITH S M, BRADY J M. Susan-a new approach to low level image processing[J]. International Journal of Computer Vision, 1997, 23(1): 45-78. [10] CAMPA G, MAMMARELLA M, NAPOLITANO M R, et al. A comparison of pose estimation algorithms for machine vision based aerial refueling for UAVs[C]//2006 14th Mediterranean Conference on Control and Automation. Piscataway: IEEE Press, 2006: 1-6. [11] FRAVOLINI M L, CAMPA G, NAPOLITANO M R. Evaluation of machine vision algorithms for autonomous aerial refueling for unmanned aerial vehicles[J]. Journal of Aerospace Computing, Information, and Communication, 2007, 4(9): 968-985. [12] MASH R, BORGHETTI B, PECARINA J. Improved aircraft recognition for aerial refueling through data augmentation in convolutional neural networks[C]//Advances in Visual Computing, 2016. [13] WANG X F, KONG X W, ZHI J H, et al. Real-time drogue recognition and 3D locating for UAV autonomous aerial refueling based on monocular machine vision[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1667-1675. [14] YIN Y J, WANG X G, XU D, et al. Robust visual detection-learning-tracking framework for autonomous aerial refueling of UAVs[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(3): 510-521. [15] CHEN A G, WANG B X, YANG C T, et al. Research on drogue detection algorithm for aerial refueling(IEEE/CSAA GNCC)[C]//2018 IEEE CSAA Guidance, Navigation and Control Conference(CGNCC). Piscataway: IEEE Press, 2018: 1-4. [16] TU Z W, BAI X. Auto-context and its application to high-level vision tasks and 3D brain image segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE Press, 2010: 1744-1757. [17] GALLEGUILLOS C, RABINOVICH A, BELONGIE S. Object categorization using co-occurrence, location and appearance[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2008: 1-8. [18] TORRALBA, MURPHY, FREEMAN, et al. Context-based vision system for place and object recognition[C]//Proceedings Ninth IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2003: 273-280. [19] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. [20] BIEDERMAN I, MEZZANOTTE R J, RABINOWITZ J C. Scene perception: Detecting and judging objects undergoing relational violations[J]. Cognitive Psychology, 1982, 14(2): 143-177. [21] CHOI M J, TORRALBA A, WILLSKY A S. A tree-based context model for object recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 240-252. [22] MOTTAGHI R, CHEN X J, LIU X B, et al. The role of context for object detection and semantic segmentation in the wild[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 891-898. [23] HU H, GU J Y, ZHANG Z, et al. Relation networks for object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3588-3597. [24] 张咪, 赵勇, 布树辉, 等. 基于阶层标识的无人机自主精准降落系统[J]. 航空学报, 2018, 39(10): 322150. ZHANG M, ZHAO Y, BU S H, et al. Multi-level marker based autonomous landing system for UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 322150(in Chinese). [25] 高嘉瑜, 袁苏哲, 景鑫, 等. 基于AprilTag二维码的无人机着陆引导方法[J]. 现代导航, 2020, 11(1): 20-25. GAO J Y, YUAN S Z, JING X, et al. Method of UAV position based on cooperative two-dimension code[J]. Modern Navigation, 2020, 11(1): 20-25(in Chinese). [26] 赵文一. 无人机视觉辅助自主降落系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. ZHAO W Y. Research on vision-based autonomous landing system of UAV[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese). [27] FALANGA D, ZANCHETTIN A, SIMOVIC A, et al. Vision-based autonomous quadrotor landing on a moving platform[C]//2017 IEEE International Symposium on Safety, Security and Rescue Robotics(SSRR). Piscataway: IEEE Press, 2017: 200-207. [28] BACA T, STEPAN P, SASKA M. Autonomous landing on a moving car with unmanned aerial vehicle[C]//2017 European Conference on Mobile Robots(ECMR). Piscataway: IEEE Press, 2017: 1-6. [29] TRUONG N Q, NGUYEN P H, NAM S H, et al. Deep learning-based super-resolution reconstruction and marker detection for drone landing[J]. IEEE Access, 2019, 7: 61639-61655. [30] SUN S Y, YIN Y J, WANG X G, et al. Robust visual detection and tracking strategies for autonomous aerial refueling of UAVs[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(12): 4640-4652. [31] 江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报, 2021, 42(4): 524519. JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524519(in Chinese). [32] 方路平, 何杭江, 周国民. 目标检测算法研究综述[J]. 计算机工程与应用, 2018, 54(13): 11-18, 33. FANG L P, HE H J, ZHOU G M. Research overview of object detection methods[J]. Computer Engineering and Applications, 2018, 54(13): 11-18, 33(in Chinese). [33] TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2019: 9626-9635. [34] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397. [35] LAW H, DENG J. CornerNet: Detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128(3): 642-656. [36] HAO Z K, LIU Y, QIN H W, et al. Scale-aware face detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2017: 1913-1922. [37] SONG G L, LIU Y, JIANG M, et al. Beyond trade-off: Accelerate FCN-based face detector with higher accuracy[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7756-7764. [38] LIU Y, LI H Y, YAN J J, et al. Recurrent scale approximation for object detection in CNN[C]//2017 IEEE International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2017: 571-579. [39] ZENG X Y, OUYANG W L, YAN J J, et al. Crafting GBD-net for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(9): 2109-2123. [40] LI H Y, LIU Y, OUYANG W L, et al. Zoom out-and-in network with map attention decision for region proposal and object detection[J]. International Journal of Computer Vision, 2019, 127(3): 225-238. [41] SONG G L, LIU Y, WANG X G. Revisiting the sibling head in object detector[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2020: 11560-11569. [42] FU C Y, SHVETS M, BERG A C. RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free[DB/OL]. arXiv preprint: 1901.03353, 2019. [43] LEE Y, PARK J. CenterMask: Real-time anchor-free instance segmentation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2020: 13903-13912. [44] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141. [45] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[M]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. [46] ZHU X Z, CHENG D Z, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2019: 6687-6696. [47] QIN Z, LI Z M, ZHANG Z N, et al. ThunderNet: Towards real-time generic object detection on mobile devices[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2019: 6717-6726. [48] HU J, SHEN L, ALBANIE S, et al. Gather-excite: Exploiting feature context in convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2018: 9401-9411. [49] CHEN L, ZHANG H W, XIAO J, et al. SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2017: 6298-6306. [50] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4510-4520. [51] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. [52] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [53] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2017: 936-944. [54] REDMON J, FARHADI A. YOLOv3: An incremental improvement[DB/OL]. arXiv preprint: 1804.02767, 2018. [55] BOCHKOVSKIY A, WANG C Y, LIAO H Y MARK. YOLOv4: Optimal speed and accuracy of object detection[DB/OL]. arXiv preprint: 2004.10934, 2014. |