1 |
LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767.
|
2 |
CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21.
|
3 |
禹志龙, 李颖晖, 郑无计, 等. 复杂结冰环境下飞机鲁棒飞行安全包线分析[J]. 航空学报, 2020, 41(1): 123223.
|
|
YU Z L, LI Y H, ZHENG W J, et al. Robust flight safe envelope analysis for aircraft under complex icing conditions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123223 (in Chinese).
|
4 |
BRAGG M, PERKINS W, SARTER N, et al. An interdisciplinary approach to inflight aircraft icing safety[C]∥ 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998: 1998-95.
|
5 |
GHISU T, JARRETT J P, PARKS G T. Robust design optimization of airfoils with respect to ice accretion[J]. Journal of Aircraft, 2011, 48(1): 287-304.
|
6 |
LI H R, ZHANG Y F, CHEN H X. Optimization of supercritical airfoil considering the ice-accretion effects[J]. AIAA Journal, 2019, 57(11): 4650-4669.
|
7 |
LI H R, ZHANG Y F, CHEN H X. Optimization design of airfoils under atmospheric icing conditions for UAV[J]. Chinese Journal of Aeronautics, 2022, 35(4): 118-133.
|
8 |
SPILLMAN J J. The use of variable camber to reduce drag, weight and costs of transport aircraft[J]. The Aeronautical Journal, 1992, 96(951): 1-9.
|
9 |
BRAGG M B, KHODADOUST A, SPRING S A. Measurements in a leading-edge separation bubble due to a simulated airfoil ice accretion[J]. AIAA Journal, 1992, 30(6): 1462-1467.
|
10 |
JACOBS J, BRAGG M. Two- and three-dimensional iced airfoil separation bubble measurements by particle image velocimetry[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 2007-88.
|
11 |
ZHANG H, LI J, JIANG Y X, et al. Analysis of the expanding process of turbulent separation bubble on an iced airfoil under stall conditions[J]. Aerospace Science and Technology, 2021, 114: 106755.
|
12 |
SPALART P R. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]∥ Proceedings of the First AFOSR International Conference on DNS/LES. Dayton: Greyden Press, 1997: 137-147.
|
13 |
STEBBINS S J, LOTH E, BROEREN A P, et al. Review of computational methods for aerodynamic analysis of iced lifting surfaces[J]. Progress in Aerospace Sciences, 2019, 111: 100583.
|
14 |
MENTER F, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4(1): 625-632.
|
15 |
SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.
|
16 |
NIKITIN N V, NICOUD F, WASISTHO B, et al. An approach to wall modeling in large-eddy simulations[J]. Physics of Fluids, 2000, 12(7): 1629-1632.
|
17 |
HU S F, ZHANG C, LIU H, et al. Study on vortex shedding mode on the wake of horn/ridge ice contamination under high-Reynolds conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(13): 5045-5056.
|
18 |
XIAO M C, ZHANG Y F. Improved prediction of flow around airfoil accreted with horn or ridge ice[J]. AIAA Journal, 2021, 59(6): 2318-2327.
|
19 |
SHI W B, LI J, GAO H X, et al. Numerical investigations on drag reduction of a civil light helicopter fuselage[J]. Aerospace Science and Technology, 2020, 106: 106104.
|
20 |
ZHANG L, LI J, MOU Y F, et al. Numerical investigation of flow around a multi-element airfoil with hybrid RANS-LES approaches based on SST model[J]. Journal of Mechanics, 2018, 34(2): 123-134.
|
21 |
SHU C W. High order ENO and WENO schemes for computational fluid dynamics[M]∥ High-Order Methods for Computational Physics. Berlin: Springer Berlin Heidelberg, 1999: 439-582.
|
22 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
23 |
ADDY H, BROEREN A, ZOECKLER J, et al. A wind tunnel study of icing effects on a business jet airfoil[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003: 2003-727.
|
24 |
BROEREN A P, BRAGG M B, ADDY H E. Flowfield measurements about an airfoil with leading-edge ice shapes[J]. Journal of Aircraft, 2006, 43(4): 1226-1234.
|
25 |
POURYOUSSEFI S G, MIRZAEI M, NAZEMI M M, et al. Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil[J]. Chinese Journal of Aeronautics, 2016, 29(3): 585-595.
|
26 |
MIRZAEI M, ARDEKANI M A, DOOSTTALAB M. Numerical and experimental study of flow field characteristics of an iced airfoil[J]. Aerospace Science and Technology, 2009, 13(6): 267-276.
|