1 |
刘大响. 航空发动机设计手册[M]. 第七册. 北京: 航空工业出版社, 2000.
|
|
LIU D X. Aeroengine design manual[M]. 7th ed. Beijing: Aviation Industry Publishing House, 2000 (in Chinese).
|
2 |
黄河峡, 谭慧俊, 庄逸, 等. 高超声速进气道/隔离段内流特性研究进展[J]. 推进技术, 2018, 39(10): 2252-2273.
|
|
HUANG H X, TAN H J, ZHUANG Y, et al. Progress in internal flow characteristics of hypersonic inlet/isolator[J]. Journal of Propulsion Technology, 2018, 39(10): 2252-2273 (in Chinese).
|
3 |
ERENGIL M E, DOLLING D S. Effects of sweepback on unsteady separation in Mach 5 compression ramp interactions[J]. AIAA Journal, 1993, 31(2): 302-311.
|
4 |
SHENG F J, TAN H J, ZHUANG Y, et al. Visualization of conical vortex and shock in swept shock/turbulent boundary layer interaction flow[J]. Journal of Visualization, 2018, 21(6): 909-914.
|
5 |
HOLST K R, SCHMISSEUR J D. Reynolds-averaged navier-stokes simulations of swept shock wave boundary layer interactions at Mach 2 and 5: AIAA-2016-3337[R]. Reston: AIAA, 2016.
|
6 |
VANSTONE L, SALEEM M, SECKIN S, et al. Experimental investigation of unsteadiness of swept-ramp shock/boundary layer interactions at Mach 2: AIAA-2015-2932[R]. Reston: AIAA, 2015.
|
7 |
VANSTONE L, SALEEM M, SECKIN S, et al. Effect of upstream boundary layer on unsteadiness of swept-ramp shock/boundary layer interactions at Mach 2: AIAA-2016-0076[R]. Reston: AIAA, 2016.
|
8 |
VANSTONE L, MUSTA M N, SECKIN S, et al. Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2[J]. Journal of Fluid Mechanics, 2018, 841: 1-27.
|
9 |
SETTLES G S, TENG H Y. Cylindrical and conical flow regimes of three-dimensional shock/boundary-layer interactions[J]. AIAA Journal, 1984, 22(2): 194-200.
|
10 |
PADMANABHAN S, THREADGILL J A, LITTLE J C. Flow similarity in swept shock/boundary layer interactions: AIAA-2022-0942[R]. Reston: AIAA, 2022.
|
11 |
陆小革, 易仕和, 何霖, 等. 高分辨率激波/边界层干扰时间演化过程分析[J]. 航空学报, 2022, 43(1): 626147.
|
|
LU X G, YI S H, HE L, et al. Time evolution process of high resolution shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 626147 (in Chinese).
|
12 |
谢祝轩, 杨彦广, 王刚. 受限流动中激波诱导分离的结构分析[J]. 航空学报, 2022, 43(1): 626042.
|
|
XIE Z X, YANG Y G, WANG G. Structure of shock-induced separation in confined flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 626042 (in Chinese).
|
13 |
KUBOTA H, STOLLERY J L. An experimental study of the interaction between a glancing shock wave and a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1982, 116: 431-458.
|
14 |
ALVI F S, SETTLES G S. Physical model of the swept shock wave/boundary-layer interaction flowfield[J]. AIAA Journal, 1992, 30(9): 2252-2258.
|
15 |
DOLLING D S, MCCLURE W B. Flowfield scaling in sharp fin-induced shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 1985, 23(2): 201-206.
|
16 |
DOLLING D S. Upstream influence in conically symmetric flow[J]. AIAA Journal, 1985, 23(6): 967-969.
|
17 |
盛发家, 谭慧俊, 黄河峡, 等. 连续双扫掠激波/湍流边界层干扰流动特性研究[J]. 推进技术, 2019, 40(5): 1023-1031.
|
|
SHENG F J, TAN H J, HUANG H X, et al. Investigation on flow characteristics of successive Bi-swept shock waves/turbulent boundary layer interaction[J]. Journal of Propulsion Technology, 2019, 40(5): 1023-1031 (in Chinese).
|
18 |
HUANG H X, TAN H J, SUN S, et al. Evolution of supersonic corner vortex in a hypersonic inlet/isolator model[J]. Physics of Fluids, 2016, 28(12): 126101.
|
19 |
BLINDE P L, HUMBLE R A, VAN OUDHEUSDEN B W, et al. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction[J]. Shock Waves, 2009, 19(6): 507-520.
|
20 |
HÄBERLE J, GÜLHAN A. Internal flowfield investigation of a hypersonic inlet at Mach 6 with bleed[J]. Journal of Propulsion and Power, 2007, 23(5): 1007-1017.
|
21 |
YANG H, LI F, SONG Y Y, et al. Numerical investigation of electrohydrodynamic (EHD) flow control in an S-shaped duct[J]. Plasma Science and Technology, 2012, 14(10): 897-904.
|
22 |
蔡佳, 黄河峡, 唐学斌, 等. 展向压力分布可控的前体/压缩面气动设计方法及其流动特性[J]. 空气动力学学报, 2022, 40(1): 66-76.
|
|
CAI J, HUANG H X, TANG X B, et al. Aerodynamic design method and flow features of forebody/compression surface with controlled lateral pressure distribution[J]. Acta Aerodynamica Sinica, 2022, 40(1): 66-76 (in Chinese).
|
23 |
石磊, 何国强, 秦飞, 等. 唇口形状对二元进气道性能影响数值模拟[J]. 推进技术, 2012, 33(5): 683-688.
|
|
SHI L, HE G Q, QIN F, et al. Numerical investigation of effects of cowl lip shape on 2-D inlet[J]. Journal of Propulsion Technology, 2012, 33(5): 683-688 (in Chinese).
|
24 |
郭金默, 谢旅荣, 李晓驰, 等. 一种锯齿状唇口超声速轴对称进气道特性[J]. 航空动力学报, 2021, 36(2): 264-274.
|
|
GUO J M, XIE L R, LI X C, et al. Characteristics of a supersonic axisymmetric inlet with saw tooth lip[J]. Journal of Aerospace Power, 2021, 36(2): 264-274 (in Chinese).
|
25 |
HUANG H X, TAN H J, SUN S, et al. Unthrottled flows with complex background waves in curved isolators[J]. AIAA Journal, 2017, 55(9): 2942-2955.
|
26 |
HUANG H X, TAN H J, SUN S, et al. Letter: Transient interaction between plasma jet and supersonic compression ramp flow[J]. Physics of Fluids, 2018, 30(4): 041703.
|