[1] MICHAEL S S, JAMES J G, ANDY P B, et al. Experiments on airfoils at low Reynolds numbers:AIAA-1996-0062[R]. Reston:AIAA, 1996.
[2] MUELLER T J. The influence of laminar separation and transition on low Reynolds number airfoil hysteresis:AIAA-1984-1617[R]. Reston:AIAA, 1984.
[3] 白鹏, 崔尔杰, 李锋, 等. 对称翼型低雷诺数小攻角升力系数非线性现象研究[J]. 力学学报, 2006, 38(1):1-8. BAI P, CUI E J, LI F, et al. Study of the nonlinear lift coefficient of the symmetrical airfoil at low Reynolds number near the zero angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):1-8(in Chinese).
[4] 白鹏, 李锋, 詹慧玲, 等. 翼型低Re数小攻角非线性非定常层流分离现象研究[J]. 中国科学:物理学力学天文学, 2015, 45(2):024703-1-12. BAI P, LI F, ZHAN H L, et al. Study about the non-linear and unsteady laminar separation phenomena around the airfoil at low Reynolds number with low incidence[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(2):024703-1-12(in Chinese).
[5] ELLSWORTH R H, MUELLER T J. Airfoil boundary layer measurements at low Re in an accelerating flow from a nonzero velocity[J]. Experiments in Fluids, 1991, 11(6):368-374.
[6] SELIG M S, GUGLIELMO J J, BROERN A P, et al. Experiments on airfoils at low Reynolds numbers:AIAA-1996-0062[R]. Reston:AIAA, 1996.
[7] MCGRANAHAN B D, SELIG M S. Surface oil flow measurements on several airfoils at low Reynolds numbers:AIAA-2003-4067[R]. Reston:AIAA, 2003.
[8] 叶建, 邹正平, 陆利蓬, 等. 低雷诺数下翼型前缘流动分离机制的研究[J]. 北京航空航天大学学报, 2004, 30(8):693-697. YE J, ZOU Z P, LU L P, et al. Investigation of separation mechanism for airfoil leading edge flow at low Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(8):693-697(in Chinese).
[9] 谢飞, 叶正寅. 低马赫数下的绕翼型非定常流动数值模拟[C]//第十二届全国计算流体力学会议论文集. 北京:中国力学学会, 2004. XIE F, YE Z Y. Numerical simulation of unsteady flow around an airfoil with low Mach number[C]//Proceedings of the 12th National Conference on Computation Fluid Dynamics. Beijing:Chinese Society of Theoretical and Applied Mechanics, 2004(in Chinese).
[10] 程钰锋, 李国强, 聂万胜. 低雷诺数下螺旋桨翼型非定常气动性能的比较[J]. 直升机技术, 2012(1):16-19. CHENG Y F, LI G Q, NIE W S. Comparison study of the propeller airfoil unsteady aerodynamic characteristics in low Reynolds number[J]. Helicopter Technique, 2012(1):16-19(in Chinese).
[11] 王铁城. 确定低雷诺数翼型转捩分离泡位置的实验研究[J]. 空气动力学学报, 1992(2):235-238. WANG T C. An experimental study on location of transitional separation bubble on a low Reynolds numbers airfoil[J]. Acta Aerodynamica Sinica, 1992(2):235-238(in Chinese).
[12] 吴鋆, 王晋军, 李天. NACA0012翼型低雷诺数绕流的实验研究[J]. 实验流体力学, 2013, 27(6):32-38. WU J, WANG J J, LI T. Experimental investigation on low Reynolds number behavior of NACA0012 airfoil[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):32-38(in Chinese).
[13] TRAUB L W. Experimental investigation of the effect of trip strips at low Reynolds number[J]. Journal of Aircraft, 2011, 48(5):1776-1784.
[14] 何飞, 宋文萍. 固定转捩在改善振荡来流下低雷诺数翼型气动性能中的应用[J]. 空气动力学学报, 2007, 25(4):495-499. HE F, SONG W P. Improving the aerodynamic performance of low Reynolds number airfoils in oscillating freestream with forced transition method[J]. Acta Aerodynamica Sinica, 2007, 25(4):495-499(in Chinese).
[15] 王庶, 米建春. 大湍流度对超低雷诺数下翼型受力及绕流的影响[J]. 航空学报, 2011, 32(1):41-48. WANG S, MI J C. Effect of large turbulence intensity on airfoil load and flow[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):41-48(in Chinese).
[16] ZAMAN K B M Q, MCKINZIE D J. Control of laminar separation over airfoils by acoustic excitation[J]. AIAA Journal, 1991, 29(7):1075-1083.
[17] NATHAN O P, THAKEJR M P, BONILLA C H, et al. Active control of flow separation on a laminar airfoil[J]. AIAA Journal, 2013, 51(5):1032-1041.
[18] 陈耀慧, 栗保明, 潘绪超, 等. 电磁力控制翼型绕流分离的增升减阻效率研究[J]. 力学学报, 2015, 47(3):414-421. CHEN Y H, LI B M, PAN X C, et al. Research of the control efficiency of lift increase and drag reduction base on flow around hydrofoil controlled by Lorentz force[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3):414-421(in Chinese).
[19] 张旺龙, 谭俊杰, 陈志华, 等. 抽吸控制对低雷诺数下翼型分离流动的影响[J]. 航空学报, 2014, 35(1):141-150. ZHANG W L, TAN J J, CHEN Z H, et al. Effect of suction control on separation flow around an airfoil at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):141-150(in Chinese).
[20] 刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4):518-524. LIU P Q, MA L C, QU Q L, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at lowRe number[J]. Acta Aerodynamica Sinica, 2013, 31(4):518-524(in Chinese).
[21] 崔钊, 李建波, 赵洪. 翼型加装格尼襟翼的低雷诺数气动特性实验研究[J]. 实验流体力学, 2013, 27(4):1-6. CUI Z, LI J B, ZHAO H. Experimental study on aerodynamic characteristics of airfoil equipped with Gurney flaps at low Reynolds numbers[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4):1-6(in Chinese).
[22] 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31):3060-3068. LI Y H, WU Y, LIANG H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Sci Bull (Chinese Ver), 2010, 55(31):3060-3068(in Chinese).
[23] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[24] WANG J J, CHOI K, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62(4):52-78.
[25] CORKE T C, POST M L, DMITRIY M O. Single-dielectric barrier discharge plasma enhanced aerodynamics:Concepts, optimization, and applications[J]. Journal of Propulsion and Power, 2008, 24(5):935-945.
[26] LITTLE J, TAKASHIMA K, NISHIHARA M, et al. Separation control with nanosecond pulse driven dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2012, 50(2):350-365.
[27] FENG L H, CHOI K S, WANG J J. Flow control over an airfoil using virtual Gurney flaps[J]. Journal of Fluid Mechanics, 2015, 767:595-626.
[28] FENG L H, JUKES T N, CHOI K S, et al. Flow control over a NACA 0012 airfoil using DBD plasma actuator with a Gurney flap[J]. Experiments in Fluids, 2012, 52(6):1533-1546.
[29] 冯立好, 王晋军, CHOI K S. 等离子体环量控制翼型增升的实验研究[J]. 力学学报, 2013, 45(6):815-821. FENG L H, WANG J J, CHOI K S. Experimental investigation on lift increment of a plasma circulation control airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6):815-821(in Chinese).
[30] KWON K, PARK S O. Aerodynamic characteristics of an elliptic airfoil at low Reynolds number[J]. Journal of Aircraft, 2005, 42(6):1642-1644.
[31] AHOLT J. Active flow control strategy of laminar separation bubbles developed over subsonic airfoils at low Reynolds numbers:AIAA-2011-0733[R]. Reston:AIAA, 2011.
[32] BRASLOW A L, KNOX E C. Simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at Mach numbers from 0 to 5:NACA-4363[R].Washington, D. C.:NASA, 1958.
[33] LAMONT P J. Pressures around an inclined ogive cylinder with laminar, transitional, or turbulent separation[J]. AIAA Journal, 1982, 20(10):1492-1499.
[34] CORKE T C, HE C, PATEL M. Plasma flaps and slats:An application of weakly-ionized plasma actuators:AIAA-2004-2127[R]. Reston:AIAA, 2004.
[35] SEIFERT A, BACHAR T, MOSS D, et al. Oscillatory blowing:A tool to delay boundary-layer separation[J]. AIAA Journal, 1993, 11(31):2052-2060.
[36] ZHANG P F, WANG J J, FENG L H, et al. Experimental study of plasma flow control on highly swept delta wing[J]. AIAA Journal, 2010, 48(1):249-252.
[37] GREENBLATT D, KASTANTIN Y, NAYERI C N, et al. Delta-wing flow control using dielectric barrier discharge actuators[J]. AIAA Journal, 2008, 46(6):1554-1560.
[38] THOMAS F O, KOZLOV A, CORKE T C. Plasma actuators for cylinder flow control and noise reduction[J]. AIAA Journal, 2008, 45(8):1921-1931.
[39] MENG X S, WANG J L, CAI J S, et al. Optimal DBD duty cycle for conical forebody side-force proportional control:AIAA-2013-0347[R]. Reston:AIAA, 2013. |