[1] 陈尚军, 秦庆华, 张威, 等. 低速冲击下金属蜂窝夹芯板抗侵彻性能的实验研[J]. 航空学报, 2018, 39(2):221483. CHEN S J. QIN Q H, ZHANG W, et al. Experimental investigations on perforations of aluminum honeycomb sandwiches under low-velocity impact[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):221483(in Chinese). [2] WU Y, LIU Q, FU J, et al. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels[J]. Composites Part B:Engineering 2017, 121:122-133. [3] 程文杰, 周丽, 张平, 等. 零泊松比十字形混合蜂窝设计分析及其在柔性蒙皮中的应用[J]. 航空学报, 2015, 36(2):680-690. CHENG W J, ZHOU L, ZHANG P, et al. Design and analysis of a zero Poisson's ratio mixed cruciform honeycomb and its application in flexible skin[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):680-690(in Chinese). [4] 贾光辉, 段枭. 蜂窝夹层板BLE的一种增强型协同优化建模方法[J]. 航空学报, 2015, 36(7):2260-2268. JIA G H, DUAN X. Enhanced collaborative optimization modeling method of BLE about honeycomb sandwich panel[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2260-2268(in Chinese). [5] 石姗姗, 陈秉智, 陈浩然, 等. Kevlar短纤维增韧碳纤维/铝蜂窝夹芯板三点弯曲与面内压缩性能[J]. 复合材料学报, 2017, 34(9):1953-1959. SHI S S, CHEN B Z, CHEN H R, et al. Three-point bending and in-plane compression properties of carbon-fiber/aluminum-honeycomb sandwich panels with short-Kevlar-fiber toughening[J]. Acta Materiae Compositae Sinica 2017, 34(9):1953-1959(in Chinese). [6] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020,37(6):1352-1363. QI J Q, DUAN Y C, TIE Y, et al. Effect of structural parameters on low-velocity impact properties of CFRP skin-aluminum honeycomb sandwich panel[J]. Acta Materiae Compositae Sinica, 2020,37(6):1352-1363. [7] 龙凯, 谷先广, 韩丹. 考虑泊松效应的材料/结构一体化设计方法[J]. 复合材料学报, 2017, 34(6):1252-1260. LONG K, GU X G, HAN D. A concurrent design method for microstructures of materials and macrostructures by considering the Poisson effect[J]. Acta Materiae Compositae Sinica, 2017, 34(6):1252-1260(in Chinese). [8] 卢子兴, 王欢, 杨振宇. 星型-箭头蜂窝结构的面内动态压溃行为[J]. 复合材料学报, 2019, 36(8):1893-1900. LU Z X, WANG H, YANG Z Y. In-plane dynamic crushing of star-arrowhead honeycomb structure[J]. Acta Materiae Compositae Sinica, 2019, 36(8):1893-1900(in Chinese). [9] 周宏元,贾昆程,王小娟. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020,37(8):2005-2014. ZHOU H Y, JIA K C, WANG X J. In-plane compression performance of foam concrete filled with sandwich structure with negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2020,37(8):2005-2014(in Chinese). [10] 秦浩星,杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4):1014-1023. QIN H X, YANG D Q. Functional element topology optimal method of metamaterial design with arbitrary negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2018, 35(4):1014-1023(in Chinese). [11] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13):1-14. YU J J, XIE Y, PEI X. State-of-art of metamaterials with negative Poisson's ratio[J]. Journal of Mechanical Engineering, 2018, 54(13):1-14(in Chinese). [12] 邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13):103-109. DENG X L, LIU W Y. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson's ratio[J]. Journal of Vibration and Shock, 2017, 36(13):103-109(in Chinese). [13] 侯秀慧, 尹冠生. 负泊松比蜂窝抗冲击性能分析[J]. 机械强度, 2016, 38(5):905-910. HOU X H, YIN G S. Dynamic crushing performance analysis for auxetic honeycomb structure[J]. Journal of Mechanical Strength, 2016, 38(5):905-910(in Chinese). [14] XIAO D, KANG X, LI Y, et al. Insight into the negative Poisson's ratio effect of metallic auxetic reentrant honeycomb under dynamic compression[J]. Materials Science and Engineering:A, 2019, 763:138151. [15] HU L L, ZHOU M Z, DENG H. Dynamic crushing response of auxetic honeycombs under large deformation:theoretical analysis and numerical simulation[J]. Thin-Walled Structures, 2018, 131:373-384. [16] HOU X, DENG Z C, ZHANG K. Dynamic crushing strength analysis of auxetic honeycombs[J]. Acta Mechanica Solida Sinica, 2016, 29(5):490-501. [17] TAN H L, HE Z C, LI K X, et al. In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio[J]. Composite Structures, 2019, 229:111415. [18] DONG Z, LI Y, ZHAO T, et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb[J]. Materials and Design, 2019, 182:108036. [19] XIAO D, DONG Z, LI Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb:Experiment and finite element analysis[J]. Materials Science and Engineering:A, 2019, 758:163-171. [20] LIU Q, MA J, HE Z, et al. Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes[J]. Composites Part B:Engineering, 2017, 121:134-144. [21] HABIBI M K, SAMAEI A T, GHESHLAGHI B G, et al. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure-Underlying mechanisms[J]. Acta Biomaterialia, 2015, 16:178-186. |