[1] POLLOCK T M. Alloy design for aircraft engines[J]. Nature Materials, 2016, 15(8):809-815. [2] 张立同, 曹腊梅, 刘国利. 近净形熔模精密铸造理论与实践[M]. 北京:国防工业出版社, 2007. ZHANG L T, CAO L M, LIU G L. Theory and practice of near net-shape investment casting[M]. Beijing:National Defense Industry Press, 2007(in Chinese). [3] BAE C J, KIM D, HALLORAN J W. Mechanical and kinetic studies on the refractory fused silica of integrally cored ceramic mold fabricated by additive manufacturing[J]. Journal of the European Ceramic Society, 2019, 39(2-3):618-623. [4] WU H H, LI D C, GUO N N. Fabrication of integral ceramic mold for investment casting of hollow turbine blade based on stereolithography[J]. Rapid Prototyping Journal, 2009, 15(4):232-237. [5] MIAO K, LU Z L, CAO J W, et al. Effect of polydimethylsiloxane on the mid-temperature strength of gelcast Al2O3 ceramic parts[J]. Materials & Design, 2016, 89:810-814. [6] XU W L, LU Z L, TIAN G Q, et al. Fabrication of single-crystal superalloy hollow blade based on integral ceramic mold[J]. Journal of Materials Processing Technology, 2019, 271:615-622. [7] BRIF Y, THOMAS M, TODD I. The use of high-entropy alloys in additive manufacturing[J]. Scripta Materialia, 2015, 99:93-96. [8] HAASE C, TANG F, WILMS M B, et al. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys-Towards rapid alloy screening and design[J]. Materials Science & Engineering A, 2017, 688:180-189. [9] ZHU Z G, NGUYEN Q B, NG F L, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting[J]. Scripta Materialia, 2018, 154:20-24. [10] 李青宇,张航,李涤尘,等. 激光增材制造WNbMoTa高性能高熵合金[J]. 机械工程学报,2019, 55(15):10-16. LI Q Y, ZHANG H, LI D C, et al. Manufacture of WNbMoTa high performance high-entropy alloy by laser additive manufacturing[J]. Journal of Mechanical Engineering, 2019, 55(15):10-16(in Chinese). [11] ZHANG H, ZHAO Y Z, CAI J L, et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing[J]. Materials & Design, 2021, 201(5):109462. [12] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15(8):804. [13] LU Z L, CAO J W, SONG Z Q, et al. Research progress of ceramic matrix composite parts based on additive manufacturing technology[J]. Virtual and Physical Prototyping, 2019, 14(4):333-348. [14] CAO J W, LU Z L, MIAO K,et al. Investigation on microstructure control of in-situ synthesized high-performance Cf/SiC composites[J]. Journal of Alloys and Compounds, 2019, 805(C):303-308. [15] CAO J W, LU Z L, MIAO K, et al. Fabrication of high-strength porous SiC-based composites with unidirectional channels[J]. Journal of the American Ceramic Society, 2019, 102(8):4888-4898. [16] XIA Y L, LU Z L, CAO J W, et al. Microstructure and mechanical property of Cf/SiC core/shell composite fabricated by direct ink writing[J]. Scripta Materialia, 2019, 165:84-88. [17] 付国太,刘洪军,张柏,等. PEEK的特性及应用[J]. 工程塑料应用, 2006, 34(10):69-71. FU G T, LIU H J, ZHANG B, et al. Characteristics and applications of PEEK[J]. Engineering Plastics Application, 2006, 34(10):69-71(in Chinese). [18] DENAULT J, DUMOUCHEL M. Consolidation process of PEEK/Carbon composite for aerospace applications[J]. Advanced Performance Materials, 1998, 5(1):83-96. [19] 张辉,方良超,陈奇海,等. 聚醚醚酮在航空航天领域的应用[J]. 新技术新工艺, 2018(10):5-8. ZHANG H, FANG L C, CHEN Q H, et al. Application of PEEK in aerospace industry[J]. New Technology & New Process, 2018(10):5-8(in Chinese). [20] YANG C C, TIAN X Y, LI D C, et al. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material[J]. Journal of Materials Processing Technology, 2017, 248:1-7. [21] 周金文,陈兴玉,刘小栋,等. 非金属3D打印天线的结构成形精度测试方法与差异性分析[J]. 电加工与模具, 2019, 347(3):68-72. ZHOU J W, CHEN X Y, LIU X D, et al. Testing method and difference analysis of structural fabrication accuracy of non-metallic 3D printing antenna[J]. Electromachining & Mould, 2019, 347(3):68-72(in Chinese). [22] YIN M, TIAN X Y, WU L L, et al. A Broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure[J]. Optics Express, 2013, 21(16):19082-19090. [23] MEI H, ZHAO X, ZHOU S, et al. 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2019, 372:940-945. [24] ISAKOV D V, LEI Q, CASTLES F, et al. 3D printed anisotropic dielectric composite with meta-material features[J]. Materials & Design, 2016, 93:423-430. [25] 熊益军,王岩,王强,等. 一种基于3D打印技术的结构型宽频吸波超材料[J]. 物理学报, 2018, 67(8):106-113. XIONG Y J, WANG Y, WANG Q, et al. Structural broadband absorbing metamaterial based on three-dimensional printing technology[J]. Acta Physica Sinica, 2018, 67(8):106-113(in Chinese). [26] ZUO Y, SU X, LI X, et al. Multimaterial 3D-printing of graphene/Li0.35Zn0.3Fe2.35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth[J]. Carbon, 2020, 167:62-74. [27] YANG D, YIN Y, ZHANG Z, et al. Wide-angle microwave absorption properties of multilayer metamaterial fabricated by 3D printing[J]. Materials Letters, 2020, 281:128571. [28] MARK G T, BENHAIM D, PARANGI A, et al. Methods for fiber reinforced additive manufacturing:US, 20150165691A1[P]. 2015-6-18. [29] DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing, 2017,16:146-152. [30] HU Q, DUAN Y, ZHANG H, et al. Manufacturing and 3D printing of continuous carbon fiber prepreg filament[J]. Journal of Materials Science, 2018, 53(3):1887-1898. [31] YANG C C, TIAN X Y, LIU T F, et al. 3D printing for continuous fiber reinforced thermoplastic composites:mechanism and performance[J]. Rapid Prototyping Journal, 2017, 23(1):209-215. [32] MATSUZAKI R, UEDA M, NAMIKIN M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports, 2016, 6:23058. [33] TIAN X Y, LIU T F, YANG C C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A:Applied Science and Manufacturing, 2016, 88:198-205. [34] HOU Z H, TIAN X Y, ZHANG J, et al. 3D printed continuous fibre reinforced composite corrugated structure[J]. Composite Structures, 2018, 184:1005-1010. [35] WANG Q R, TIAN X Y, HUANG L, et al. Programmable morphing composites with embedded continuous fibers by 4D printing[J]. Materials & Design, 2018, 155:404-413. [36] JOHNSTON M M, WERKHEISER M J, SNYDER M P, et al. 3D printing in zero-G ISS technology demonstration[C]//AIAA SPACE 2014 Conference, 2014. [37] HAFLEY R A, TAMINGER K M B, BIRD R K. Electron beam freeform fabrication in the space environment[C]//45th AIAA Aerospace Sciences Meeting and Exhibit, 2007:8-11. [38] WERKHEISER N. In-space manufacturing (ISM):3D printing in space technology demonstration[R]. 2015. [39] HOYT R P, CUSHING J I, SLOSTAD J T, et al. SpiderFab:An architecture for self-fabricating space systems[C]//AIAA SPACE 2013 Conference and Exposition, 2014:1-17. [40] POP3D:3D printer in the space[EB/OL]. 2014. Altran, ESA, ALTRAN Italy. http://www.altran.it/en/pressnews/notizie-da-altran-italia/news/2014/pop3d-3d-printerspace.html#.V2dGkCN9671. [41] 俄罗斯制成该国首台太空3D打印样机[EB/OL]. 2016-11-11. 新华社. http://www.xinhuanet.com/world/2016-11/11/c_1119894405.htm [42] 王功,刘亦飞,程天锦,等. 空间增材制造技术的应用[J]. 空间科学学报, 2016, 36(4):571-576. WANG G, LIU Y F, CHENG T J, et al. Application of additive manufacturing technology for space[J]. Chinese Journal of Space Science. 2016, 36(4):571-576(in Chinese). [43] LUO M, TIAN X Y, SHANG J, et al. Impregnation and interlayer bonding behaviours of 3 d-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A:Applied Science and Manufacturing, 2019, 121:130-138. [44] 刘腾飞,田小永,朱伟军,等. 连续碳纤维增强聚乳酸复合材料3D打印及回收再利用机理与性能[J]. 机械工程学报,2019, 55(7):128-134. LIU T F, TIAN X Y, ZHU W J, et al. Mechanism and performance of 3D printing and recycling for continuous carbon fiber reinforced PLA composites[J]. Journal of Mechanical Engineering, 2019, 55(7):128-134(in Chinese). |