Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (15): 528698-528698.doi: 10.7527/S1000-6893.2023.28698
• Flight Mechanics and Guidance Control • Previous Articles Next Articles
Jiacheng ZHANG1,2, Yuehe ZHU1,2, Yazhong LUO1,2()
Received:
2023-04-11
Revised:
2023-04-22
Accepted:
2023-05-06
Online:
2023-08-15
Published:
2023-05-12
Contact:
Yazhong LUO
E-mail:luoyz@nudt.edu.cn
Supported by:
CLC Number:
Jiacheng ZHANG, Yuehe ZHU, Yazhong LUO. Space target rendezvous sequence planning via pointer networks[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528698-528698.
Table 1
Value ranges of dynamics attributes of targets
算例 | 参数类型 | 最小值 | 最大值 |
---|---|---|---|
算例1 | 初始位置横向分量x0/m | 0 | 100 |
初始位置纵向分量y0/m | 0 | 100 | |
移动速度横向分量vx,0/(m·s-1) | 1.5 | 5 | |
移动速度纵向分量vy,0/(m·s-1) | 1.5 | 5 | |
2目标间转移时长 | 0 | 10 | |
算例2 | 半长轴a/AU | 2.4 | 3 |
偏心率e | 0.1 | 0.2 | |
轨道倾角I0/(°) | 5 | 15 | |
升交点赤经Ω0/(°) | 0 | 360 | |
近地点幅角ω0/(°) | 0 | 360 | |
真近点角θ0/(°) | 0 | 360 | |
2目标间转移时长 | 300 | 1 200 | |
算例3 | 半长轴a/km | 6 990 | 7 280 |
偏心率e | 0 | 0.02 | |
轨道倾角I0/(°) | 80 | 85 | |
升交点赤经Ω0/(°) | 0 | 360 | |
近地点幅角ω0/(°) | 0 | 360 | |
真近点角θ0/(°) | 0 | 360 | |
两目标间转移时长 | 30 | 180 |
Table 5
Multi-spacecraft rendezvous sequences obtained by sequencer-assisted optimization
航天器序号 | 交会目标顺序 | |
---|---|---|
1 | 2, 78, 3, 19, 14, 37, 18, 41, 62, 80, 106, 13, 121, 0, 107, 10, 9, 34, 63, 25, 27, 61, 101, 94, 90, 83, 28, 77, 73 | 3.871 |
2 | 65, 112, 40, 87, 66, 51, 97, 17, 8, 22, 29, 46, 115, 92, 33, 88, 109, 55, 21, 93, 75, 89 | 3.299 |
3 | 31, 47, 43, 98, 52, 111, 57, 16, 15, 58, 104, 42, 74, 7, 6, 24, 95, 35, 39 | 3.195 |
4 | 69, 122, 103, 117, 91, 118, 84, 100, 48, 82, 60, 85, 99, 5, 120, 119, 54 | 2.029 |
5 | 44, 86, 59, 4, 105, 102, 36, 23, 68, 67, 114, 76 | 1.737 |
6 | 30, 49, 20, 116, 32, 81, 72, 64, 108, 79, 50, 12, 53, 56, 113 | 1.437 |
7 | 71, 96, 45, 1, 38, 11, 110, 26, 70 | 0.796 |
1 | SHAN M H, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80: 18-32. |
2 | SIZOV D A, ASLANOV V S. Space debris removal with harpoon assistance: Choice of parameters and optimization[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(4): 767-778. |
3 | LI Y X, HUO J, MA P, et al. Target localization method of non-cooperative spacecraft on on-orbit service[J]. Chinese Journal of Aeronautics, 2022, 35(11): 336-348. |
4 | ZHANG J, PARKS G T, LUO Y Z, et al. Multispacecraft refueling optimization considering the J2 perturbation and window constraints[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(1): 111-122. |
5 | GAO Y T, LU X, PENG Y M, et al. Trajectory optimization of multiple asteroids exploration with asteroid 2010TK7 as main target[J]. Advances in Space Research, 2019, 63(1): 432-442. |
6 | PELONI A, CERIOTTI M, DACHWALD B. Solar-sail trajectory design for a multiple near-earth-asteroid rendezvous mission[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(12): 2712-2724. |
7 | HELVIG C S, ROBINS G, ZELIKOVSKY A. The moving-target traveling salesman problem[J]. Journal of Algorithms, 2003, 49(1): 153-174. |
8 | SAAD S, WAN JAAFAR W N, JAMIL S J. Solving standard traveling salesman problem and multiple traveling salesman problem by using branch-and-bound[C]∥ AIP Conference Proceedings. 2013. |
9 | TOMANOVÁ P, HOLÝ V. Ant colony optimization for time-dependent travelling salesman problem[C]∥Proceedings of the 2020 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. New York: ACM, 2020: 47-51. |
10 | ZHAO J F, FENG W M, YUAN J P. A novel two-level optimization strategy for multi-debris active removal mission in LEO[J]. Computer Modeling in Engineering & Sciences, 2020, 122(1): 149-174. |
11 | 朱阅訸. 面向大规模目标访问任务的飞行序列规划方法[D]. 长沙: 国防科技大学, 2020. |
ZHU Y H. Flight sequence planning method for large-scale-object visiting mission[D]. Changsha: National University of Defense Technology, 2020 (in Chinese). | |
12 | SHANG H B, LIU Y X. Assessing accessibility of main-belt asteroids based on Gaussian process regression[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(5): 1144-1154. |
13 | HUANG A Y, LUO Y Z, LI H N. Fast estimation of perturbed impulsive rendezvous via semi-analytical equality-constrained optimization[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(12): 2383-2390. |
14 | ZHU Y H, LUO Y Z. Fast approximation of optimal perturbed long-duration impulsive transfers via artificial neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1123-1138. |
15 | ZHU Y H, LUO Y Z. Fast evaluation of low-thrust transfers via multilayer perceptions[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(12): 2627-2637. |
16 | VIAVATTENE G, CERIOTTI M. Artificial neural networks for multiple NEA rendezvous missions with continuous thrust[J]. Journal of Spacecraft and Rockets, 2022, 59(2): 574-586. |
17 | CUI P Y, QIAO D, CUI H T, et al. Target selection and transfer trajectories design for exploring asteroid mission[J]. Science China Technological Sciences, 2010, 53(4): 1150-1158. |
18 | CERF M. Multiple space debris collecting mission—debris selection and trajectory optimization[J]. Journal of Optimization Theory and Applications, 2013, 156(3): 761-796. |
19 | HUANG A Y, LUO Y Z, LI H N. Global optimization of multiple-spacecraft rendezvous mission via decomposition and dynamics-guide evolution approach[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(1): 171-178. |
20 | WANG H J, YANG Z, ZHOU W G, et al. Online scheduling of image satellites based on neural networks and deep reinforcement learning[J]. Chinese Journal of Aeronautics, 2019, 32(4): 1011-1019. |
21 | LITTLE B D, FRUEH C E. Space situational awareness sensor tasking: Comparison of machine learning with classical optimization methods[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(2): 262-273. |
22 | 刘冰雁, 叶雄兵, 周赤非, 等. 基于改进DQN的复合模式在轨服务资源分配[J]. 航空学报, 2020, 41(5): 323630. |
LIU B Y, YE X B, ZHOU C F, et al. Allocation of composite mode on-orbit service resource based on improved DQN[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 323630 (in Chinese). | |
23 | IZZO D, MÄRTENS M, PAN B F. A survey on artificial intelligence trends in spacecraft guidance dynamics and control[J]. Astrodynamics, 2019, 3(4): 287-299. |
24 | SONG Y, GONG S P. Solar-sail trajectory design for multiple near-Earth asteroid exploration based on deep neural networks[J]. Aerospace Science and Technology, 2019, 91: 28-40. |
25 | IZZO D, ÖZTÜRK E. Real-time guidance for low-thrust transfers using deep neural networks[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(2): 315-327. |
26 | ZAVOLI A, FEDERICI L. Reinforcement learning for robust trajectory design of interplanetary missions[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(8): 1440-1453. |
27 | SÁNCHEZ-SÁNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: Study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1122-1135. |
28 | SCORSOGLIO A, D’AMBROSIO A, GHILARDI L, et al. Image-based deep reinforcement meta-learning for autonomous lunar landing[J]. Journal of Spacecraft and Rockets, 2022, 59(1): 153-165. |
29 | YANG B, LI S A, FENG J L, et al. Fast solver for J2-perturbed lambert problem using deep neural network[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(5): 875-884. |
30 | PENG H, BAI X L. Artificial neural network–based machine learning approach to improve orbit prediction accuracy[J]. Journal of Spacecraft and Rockets, 2018, 55(5): 1248-1260. |
31 | VINYALS O, FORTUNATO M, JAITLY N. Pointer networks[DB/OL]. arXiv preprint: 1506.03134, 2015. |
32 | GU S S, HAO T, YAO H M. A pointer network based deep learning algorithm for unconstrained binary quadratic programming problem[J]. Neurocomputing, 2020, 390: 1-11. |
33 | GU S S, YAO H M. Pointer network based deep learning algorithm for the maximum clique problem[J]. International Journal on Artificial Intelligence Tools, 2021, 30(1): 2140004. |
34 | GU S S, YANG Y E. A deep learning algorithm for the max-cut problem based on pointer network structure with supervised learning and reinforcement learning strategies[J]. Mathematics, 2020, 8(2): 298. |
35 | 马一凡, 赵凡宇, 王鑫, 等. 基于改进指针网络的卫星对地观测任务规划方法[J]. 浙江大学学报(工学版), 2021, 55(2): 395-401. |
MA Y F, ZHAO F Y, WANG X, et al. Satellite earth observation task planning method based on improved pointer networks[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 395-401 (in Chinese). | |
36 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
37 | KIM Y. Convolutional neural networks for sentence classification[DB/OL]. arXiv preprint: 1408.5882, 2014. |
38 | NUDT. Problem data of the GTOC11: Candidate asteroids[EB/OL]. . |
39 | ESA. Problem data of the GTOC9: Debris orbits[EB/OL]. . |
40 | BANG J, AHN J. Multitarget rendezvous for active debris removal using multiple spacecraft[J]. Journal of Spacecraft and Rockets, 2019, 56(4): 1237-1247. |
[1] | Honglin ZHANG, Jianjun LUO, Weihua MA. Spacecraft game decision making for threat avoidance of space targets based on machine learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329136-329136. |
[2] | Yunpeng CAI, Dapeng ZHOU, Jiangchuan DING. Intelligent collaborative control of UAV swarms with collision avoidance safety constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529683-529683. |
[3] | Shengzhe SHAN, Weiwei ZHANG. Air combat intelligent decision-making method based on self-play and deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328723-328723. |
[4] | Jiaxiu YANG, Xinkai LI, Hongli ZHANG, Hao WANG. Time-varying formation control for heterogeneous clusters with switching topologies via reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329166-329166. |
[5] | Bing XIAO, Haichao ZHANG. Reinforcement learning robust optimal control for spacecraft attitude stabilization [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628890-628890. |
[6] | Weilin NI, Yonghai WANG, Cong XU, Fenghua CHI, Haizhao LIANG. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729400-729400. |
[7] | Xuejian WANG, Yongming WEN, Xiaorong SHI, Ningning ZHANG, Jiexi LIU. Design of hybrid intelligent decision framework for multi⁃agent and multi⁃coupling tasks [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729770-729770. |
[8] | Youpeng DENG, Jiaxuan FAN, Yan ZHENG, Zhenya WANG, Yongliang LYU, Yuxiao LI. Multiagent opponent modeling with incompleted information [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729782-729782. |
[9] | Zhilin FAN, Hongyong YANG, Yilin HAN. Target round-up control for multi-agent systems based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727487-727487. |
[10] | Xiaowei FU, Zhe XU, Jindong ZHU, Nan WANG. Maneuvering decision-making of multi-UAV attack-defence confrontation based on PER-MATD3 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327083-327083. |
[11] | Xizhen GAO, Liang TANG, Huang HUANG. Deep reinforcement learning in autonomous manipulation for celestial bodies exploration: Applications and challenges [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 26762-026762. |
[12] | Pan ZHOU, Jiangtao HUANG, Sheng ZHANG, Gang LIU, Bowen SHU, Jigang TANG. Intelligent air combat decision making and simulation based on deep reinforcement learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126731-126731. |
[13] | Yupeng FU, Xiangyang DENG, Ziqiang ZHU, Limin ZHANG. Value-filter based air-combat maneuvering optimization [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 628871-628871. |
[14] | Xiangwei ZHU, Dan SHEN, Kai XIAO, Yuexin MA, Xiang LIAO, Fuqiang GU, Fangwen YU, Kefu GAO, Jingnan LIU. Mechanisms, algorithms, implementation and perspectives of brain⁃inspired navigation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 28569-028569. |
[15] | Chenglei YUE, Xuechuan WANG, Xiaokui YUE, Ting SONG. A spacecraft rendezvous and docking method based on inverse reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328420-328420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341