1 |
何光宇, 李应红, 柴艳, 等. 航空发动机压气机叶片砂尘冲蚀防护涂层关键问题综述[J]. 航空学报, 2015, 36(6):1733-1743.
|
|
HE G Y, LI Y H, CHAI Y, et al. Review of key issues on coating against sand erosion of aero-engine compressor blade[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1733-1743 (in Chinese).
|
2 |
HE G Y, SUN D Y, CHEN J, et al. Key problems affecting the anti-erosion coating performance of aero-engine compressor: a review[J]. Coatings, 2019, 9(12): 821.
|
3 |
PEPI M, SQUILLACIOTI R, PFLEDDERER L, et al. Solid particle erosion testing of helicopter rotor blade materials[J]. Journal of Failure Analysis and Prevention, 2012, 12(1): 96-108.
|
4 |
CAO X, HE W F, HE G Y, et al. Sand erosion resistance improvement and damage mechanism of TiAlN coating via the bias-graded voltage in FCVA deposition[J]. Surface and Coatings Technology, 2019, 378: 125009.
|
5 |
NAVEED M, SCHLAG H, KÖNIG F, et al. Influence of the erodent shape on the erosion behavior of ductile and brittle materials[J]. Tribology Letters, 2017, 65(1): 18.
|
6 |
SUN Z P, HE G Y, MENG Q J, et al. Corrosion mechanism investigation of TiN/Ti coating and TC4 alloy for aircraft compressor application[J]. Chinese Journal of Aeronautics, 2020, 33(6): 1824-1835.
|
7 |
LI Y R, CHEN F Y, LI R N, et al. Research on aerodynamic characteristics of wind turbine airfoil and blade in sand-wind environment[J]. International Transactions on Electrical Energy Systems, 2021, 31(11):e12541.
|
8 |
石瑞芳, 林建忠. 气固两相湍流场纳米颗粒演变特性综述[J]. 航空学报, 2021, 42(12): 625825.
|
|
SHI R F, LIN J Z. A review on evolution characteristics of nanoparticles in gas-solid two-phase turbulent flow field[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625825 (in Chinese).
|
9 |
王萍, 郑晓静. 风沙两相流数值模拟研究进展[J]. 航空学报, 2021, 42(9): 625767.
|
|
WANG P, ZHENG X J. Advances in numerical simulation of wind-blown sand[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625767 (in Chinese).
|
10 |
牛佳佳, 王锁芳, 李鹏飞. 非球形粒子反弹分布特性试验探究[J]. 推进技术, 2018, 39(3): 638-644.
|
|
NIU J J, WANG S F, LI P F. Experimental research on rebound distribution characteristics of non-spherical particles[J]. Journal of Propulsion Technology, 2018, 39(3): 638-644 (in Chinese).
|
11 |
赵聪敏, 何清, 杨兴华, 等. 巴丹吉林沙漠风沙流输沙沙粒形貌特征分析[J]. 沙漠与绿洲气象, 2012, 6(2): 25-29.
|
|
ZHAO C M, HE Q, YANG X H, et al. Analysis of sand shape characteristics from the wind-sand flows in Badanjilin desert[J]. Desert and Oasis Meteorology, 2012, 6(2): 25-29 (in Chinese).
|
12 |
王红芸, 李岩, 赵丽丽, 等. 激光粒度分析仪分析方法的研究[J]. 科技资讯, 2014, 12(19): 213-214.
|
|
WANG H Y, LI Y, ZHAO L L, et al. Study on analysis method of laser particle size analyzer[J]. Science & Technology Information, 2014, 12(19): 213-214 (in Chinese).
|
13 |
倪寿亮. 粒度分析方法及应用[J]. 广东化工, 2011, 38(2): 223-224, 227.
|
|
NI S L. Particle size analysis method and its application[J]. Guangdong Chemical Industry, 2011, 38(2): 223-224, 227 (in Chinese).
|
14 |
KOMBA J J, ANOCHIE-BOATENG J K, VAN DER MERWE STEYN W. Analytical and laser scanning techniques to determine shape properties of aggregates[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2335(1): 60-71.
|
15 |
ALSHIBLI K A, DRUCKREY A M, AL-RAOUSH R I, et al. Quantifying morphology of sands using 3D imaging[J]. Journal of Materials in Civil Engineering, 2015, 27(10): 04014275.
|
16 |
SUN Y, INDRARATNA B, NIMBALKAR S. Three-dimensional characterisation of particle size and shape for ballast[J]. Géotechnique Letters, 2014, 4(3): 197-202.
|
17 |
JIA X D, GARBOCZI E J. Advances in shape measurement in the digital world[J]. Particuology, 2016, 26: 19-31.
|
18 |
LIANG H, SHEN Y, XU J H, et al. Multiscale three-dimensional morphological characterization of calcareous sand particles using spherical harmonic analysis[J]. Frontiers in Physics, 2021, 9: 744319.
|
19 |
ZHOU X W, LIU J Z, ZHU J, et al. Shape characterization of sand particles based on digital image processing technology[J]. Journal of Southeast University, 2020, 36(3): 313-321.
|
20 |
万成, 张肖宁, 贺玲凤, 等. 基于真实细观尺度的沥青混合料三维重构算法[J]. 中南大学学报(自然科学版), 2012, 43(7): 2813-2820.
|
|
WAN C, ZHANG X N, HE L F, et al. 3D reconstruction algorithm of asphalt concrete based on real microscopic scale[J]. Journal of Central South University (Science and Technology), 2012, 43(7): 2813-2820 (in Chinese).
|
21 |
PENG Y P, WU Z B, CAO G Z, et al. Three-dimensional reconstruction of wear particles by multi-view contour fitting and dense point-cloud interpolation[J]. Measurement, 2021, 181: 109638.
|
22 |
ZHOU B, WANG J, WANG H. Three-dimensional sphericity, roundness and fractal dimension of sand particles[J]. Géotechnique, 2018, 68(1): 18-30.
|
23 |
张永弟, 岳彦芳, 杨光, 等. 提高CT图像手骨模型重建精度的方法[J]. 计算机辅助设计与图形学学报, 2017, 29(10): 1802-1806.
|
|
ZHANG Y D, YUE Y F, YANG G, et al. A method of increasing precision for hand bone models reconstruction of CT images[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(10): 1802-1806 (in Chinese).
|
24 |
吕继淮, 刘守慎, 尹万力, 等. 军用直升机防砂尘要求 [S]. 1991.
|
|
LV J H, LIU S S, YIN W L, et al. Requirements for sand and dust control of military helicopters [S]. 1991 (in Chinese).
|
25 |
KIM H, AHN E, CHO S, et al. Comparative analysis of image binarization methods for crack identification in concrete structures[J]. Cement and Concrete Research, 2017, 99: 53-61.
|
26 |
LORENSEN W E. History of the marching cubes algorithm[J]. IEEE Computer Graphics and Applications, 2020, 40(2): 8-15.
|