[1] 于浛, 魏喜庆, 宋申民, 等. 基于自适应容积卡尔曼滤波的非合作航天器相对运动估计[J]. 航空学报, 2014, 35(8):2251-2260. YUH, WEI X Q, SONG S M, et al. Relative motion estimation of non-cooperative spacecraft based on adaptive CKF[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2251-2260(in Chinese). [2] 宗群, 王丹丹, 邵士凯, 等. 多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学学报, 2017, 49(3):1-14. ZONG Q, WANG D D, SHAO S K, et al. Research status and development of multi UAV coordinated formation flight control[J]. Journal of Harbin Institute of Technology, 2017, 49(3):1-14(in Chinese). [3] FORSHAW J L, AGLIETTI G S,NAVARATHINAM N, et al. Remove DEBRIS:An in-orbit active debris removal demonstration mission[J]. Acta Astronautica, 2016, 127:448-463. [4] KISANTAL M, SHARMA S, PARK T H, et al. Satellite pose estimation challenge:Dataset, competition design, and results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5):4083-4098. [5] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [6] BAY H, TUYTELAARS T, GOOL L V. SURF:Speeded up robust features[C]//Proceedings of the 9th European conference on Computer Vision-Volume Part I. Springer-Verlag, 2006. [7] ANSAR A, DANIILIDIS K.Linear pose estimation from points or lines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5):578-589. [8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. [9] PROENÇA P F, GAO Y. Deep learning for spacecraft pose estimation from photorealistic rendering[C]//2020 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2020:6007-6013. [10] SHARMA S, D'AMICO S. Neural network-based pose estimation for noncooperative spacecraft rendezvous[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6):4638-4658. [11] CHEN B, CAO J W, PARRA A, et al. Satellite pose estimation with deep landmark regression and nonlinear pose refinement[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway:IEEE Press, 2019:2816-2824. [12] PARK T H, SHARMA S, D'AMICO S. Towards robust learning-based pose estimation of noncooperativespacecraft[DB/OL]. arXiv preprint:1909.00392, 2019. [13] LEPETIT V, MORENO-NOGUER F, FUA P.EPnP:An accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 2008, 81(2):155-166. [14] HUAN W X, LIU M M, HU Q L. Pose estimation for non-cooperative spacecraft based on deep learning[C]//202039th Chinese Control Conference (CCC). Piscataway:IEEE Press, 2020:3339-3343. [15] GEIRHOS R, RUBISCH P, MICHAELIS C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy androbustness[DB/OL]. arXiv preprint:1811.12231, 2018. [16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017;30. [17] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Computer Vision-ECCV 2020, 2020:213-229. [18] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [19] HE J, ZHAO L N, YANG H W, et al. HSI-BERT:Hyperspectral image classification using the bidirectional encoder representation from transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1):165-178. [20] LIU R J, YUAN Z J, LIU T, et al. End-to-end lane shape prediction with transformers[C]//2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE Press, 2021:3693-3701. [21] 于起峰, 尚洋. 摄像测量学原理与应用研究[M]. 北京:科学出版社, 2009:23-32. YU Q F, SHANG Y. Videometrics:Principles and researches[M]. Beijing:Science Press, 2009:23-32(in Chinese). [22] WOLFE W J, MATHIS D, SKLAIR C W, et al. The perspective view of three points[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 1991, 13(1):66-73. [23] FISCHLER M A, BOLLES R C. A paradigm for model fitting with applications to image analysis and automated cartography[J]. Commun. ACM, 1981, 24(6):381-395. [24] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:770-778. [25] CHEN K, WANG J Q, PANG J M, et al. MMDetection:Open MMLab detection toolbox and benchmark[DB/OL]. ArXiv preprint:1906.07155, 2019. [26] WANG J D, SUN K, CHENG T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10):3349-3364. |