[1] 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5):32-55. GU D D, ZHANG H M, CHEN H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5):32-55(in Chinese). [2] 田宗军, 顾冬冬, 沈理达, 等. 激光增材制造技术在航空航天领域的应用与发展[J]. 航空制造技术, 2015, 58(11):38-42. TIAN Z J, GU D D, SHEN L D, et al. Application and development of laser additive manufacturing technology in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology, 2015, 58(11):38-42(in Chinese). [3] ZHU J H, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing:Status and challenges[J]. Chinese Journal of Aeronautics, 2021, 34(1):91-110. [4] KLINGVALL EK R, RÄNNAR L E, BÄCKSTÖM M, et al. The effect of EBM process parameters upon surface roughness[J]. Rapid Prototyping Journal, 2016, 22(3):495-503. [5] ZHENG L J, LIU Y Y, SUN S B, et al. Selective laser melting of Al-8.5Fe-1.3V-1.7Si alloy:Investigation on the resultant microstructure and hardness[J]. Chinese Journal of Aeronautics, 2015, 28(2):564-569. [6] CHEN Z E, WU X H, TOMUS D, et al. Surface roughness of selective laser melted Ti-6Al-4V alloy components[J]. Additive Manufacturing, 2018, 21:91-103. [7] CHEN J, HOU W, WANG X Z, et al. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg[J]. Chinese Journal of Aeronautics, 2020, 33(7):2043-2054. [8] QIU C L, YUE S, ADKINS N J E, et al. Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting[J]. Materials Science and Engineering:A, 2015, 628:188-197. [9] STIMPSON C K, SNYDER J C, THOLE K A, et al. Roughness effects on flow and heat transfer for additively manufactured channels[J]. Journal of Turbomachinery, 2016, 138(5):051008. [10] 张军伟, 周超, 侯文博, 等. 金属医疗器械化学抛光研究进展[J]. 电镀与涂饰, 2018, 37(11):514-518. ZHANG J W, ZHOU C, HOU W B, et al. Progress on research of chemical polishing for metal medical devices[J]. Electroplating & Finishing, 2018, 37(11):514-518(in Chinese). [11] PYKA G, KERCKHOFS G, PAPANTONIOU I, et al. Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures[J]. Materials, 2013, 6(10):4737-4757. [12] 李晓丹, 李建中, 倪家强, 等. 激光增材制造钛合金构件的化学抛光工艺研究[J]. 航空制造技术, 2020, 63(10):66-71. LI X D, LI J Z, NI J Q, et al. Chemical polishing of titanium alloy shaped by laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 2020, 63(10):66-71(in Chinese). [13] 郭怡东, 马玉娥, 李佩谣. 增材制造钛合金微桁架夹芯板低速冲击响应[J]. 航空学报, 2021, 42(2):423820. GUO Y D, MA Y E, LI P Y. Low velocity impact response of additively manufactured titanium alloy micro-truss sandwich panels[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2):423820(in Chinese). [14] ŁYCZKOWSKA E, SZYMCZYK P, DYBAŁA B, et al. Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing[J]. Archives of Civil and Mechanical Engineering, 2014, 14(4):586-594. [15] LHUISSIER P, DE FORMANOIR C, MARTIN G, et al. Geometrical control of lattice structures produced by EBM through chemical etching:Investigations at the scale of individual struts[J]. Materials & Design, 2016, 110:485-493. [16] DE FORMANOIR C, SUARD M, DENDIEVEL R, et al. Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching[J]. Additive Manufacturing, 2016, 11:71-76. [17] WYSOCKI B, IDASZEK J, BUHAGIAR J, et al. The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell response[J]. Materials Science and Engineering:C, 2019, 95:428-439. [18] VAN HOOREWEDER B, LIETAERT K, NEIRINCK B, et al. CoCr F75 scaffolds produced by additive manufacturing:Influence of chemical etching on powder removal and mechanical performance[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68:216-223. [19] BALYAKIN A V, SHVETCOV A N, ZHUCHENKO E I. Chemical polishing of samples obtained by selective laser melting from titanium alloy Ti6Al4V[J]. MATEC Web of Conferences, 2018, 224:01031. [20] WYSOCKI B, IDASZEK J, ZDUNEK J, et al. The influence of selective laser melting (SLM) process parameters on in-vitro cell response[J]. International Journal of Molecular Sciences, 2018, 19(6):1619. [21] PERSENOT T, MARTIN G, DENDIEVEL R, et al. Enhancing the tensile properties of EBM as-built thin parts:Effect of HIP and chemical etching[J]. Materials Characterization, 2018, 143:82-93. [22] MOHAMMAD A E K, WANG D W. Electrochemical mechanical polishing technology:Recent developments and future research and industrial needs[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5-8):1909-1924. [23] KIM S H, LEE S G, CHOI S G, et al. A study on the characteristics of micro electropolishing for stainless steel[J]. Advanced Materials Research, 2011, 328-330:474-477. [24] LEE E S. Machining characteristics of the electropolishing of stainless steel (STS316L)[J]. The International Journal of Advanced Manufacturing Technology, 2000, 16(8):591-599. [25] HAN W, FANG F Z. Fundamental aspects and recent developments in electropolishing[J]. International Journal of Machine Tools and Manufacture, 2019, 139:1-23. [26] LASSELL A. The electropolishing of electron beam melting, additively manufactured TI6AL4V titanium:Relevance, process parameters and surface finish[D]. Louisvlle:University of Louisville, 2016. [27] ZHANG Y F, LI J Z, CHE S H, et al. Electrochemical polishing of additively manufactured Ti-6Al-4V alloy[J]. Metals and Materials International, 2020, 26(6):783-792. [28] GODDARD A J, HARRIS R C, SALEEM S, et al. Electropolishing and electrolytic etching of Ni-based HIP consolidated aerospace forms:A comparison between deep eutectic solvents and aqueous electrolytes[J]. Transactions of the IMF, 2017, 95(3):137-146. [29] PROTSENKO V S, BUTYRINA T E, BOBROVA L S, et al. Enhancing corrosion resistance of nickel surface by electropolishing in a deep eutectic solvent[J]. Materials Letters, 2020, 270:127719. [30] NESTLER K, BÖTTGER-HILLER F, ADAMITZKI W, et al. Plasma electrolytic polishing-an overview of applied technologies and current challenges to extend the polishable material range[J]. Procedia CIRP, 2016, 42:503-507. [31] URLEA V, BRAILOVSKI V. Electropolishing and electropolishing-related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components[J]. Journal of Materials Processing Technology, 2017, 242:1-11. [32] LOHSER J R. Evaluation of electrochemical and laser polishing of selectively LaserMelted 316L stainless steel[D]. San Luis Obispo:Cal Poly, 2018. [33] MINGEAR J, ZHANG B, HARTL D, et al. Effect of process parameters and electropolishing on the surface roughness of interior channels in additively manufactured nickel-titanium shape memory alloy actuators[J]. Additive Manufacturing, 2019, 27:565-575. [34] TYAGI P, GOULET T, RISO C, et al. Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing[J]. Additive Manufacturing, 2019, 25:32-38. [35] CHANG S, LIU A H, ONG C Y A, et al. Highly effective smoothening of 3D-printed metal structures via overpotential electrochemical polishing[J]. Materials Research Letters, 2019, 7(7):282-289. [36] FU Y Z, WANG X P, GAO H, et al. Blade surface uniformity of blisk finished by abrasive flow machining[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(5-8):1725-1735. [37] 赵路, 孙玉利, 施凯博, 等. 整体叶盘磨粒流加工仿真与试验研究[J]. 航空制造技术, 2019, 62(13):53-59. ZHAO L, SUN Y L, SHI K B, et al. Simulations and experiments on blisk by using abrasive flow machining[J]. Aeronautical Manufacturing Technology, 2019, 62(13):53-59(in Chinese). [38] 高航, 李世宠, 付有志, 等. 金属增材制造格栅零件磨粒流抛光[J]. 航空学报, 2017, 38(10):421210. GAO H, LI S C, FU Y Z, et al. Abrasive flow machining of additively manufactured metal grilling parts[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):421210(in Chinese). [39] LI J Y, YANG L F, LIU W N, et al. Experimental research into technology of abrasive flow machining nonlinear tube runner[J]. Advances in Mechanical Engineering, 2014, 6:752353. [40] HAN S, SALVATORE F, RECH J, et al. Abrasive flow machining (AFM) finishing of conformal cooling channels created by selective laser melting (SLM)[J]. Precision Engineering, 2020, 64:20-33. [41] 党稼宁, 雷力明, 石磊, 等. 增材制造燃油喷嘴特征件磨粒流抛光研究[J]. 航空制造技术, 2019, 62(7):79-83, 90. DANG J N, LEI L M, SHI L, et al. Study on abrasive flow machining of additive manufacturing fuel nozzle features[J]. Aeronautical Manufacturing Technology, 2019, 62(7):79-83, 90(in Chinese). [42] UHLMANN E, SCHMIEDEL C, WENDLER J. CFD simulation of the abrasive flow machining process[J]. Procedia CIRP, 2015, 31:209-214. [43] 李世宠. 增材制造格栅零件磨粒流抛光加工技术研究[D]. 大连:大连理工大学, 2017. LI S C. Study of abrasive flow machining technology for additively manufactured grille parts[D]. Dalian:Dalian University of Technology, 2017(in Chinese). [44] ROSA B, MOGNOL P, HASCOËT J Y. Laser polishing of additive laser manufacturing surfaces[J]. Journal of Laser Applications, 2015, 27(S2):S29102. [45] GORA W S, TIAN Y T, CABO A P, et al. Enhancing surface finish of additively manufactured titanium and cobalt chrome elements using laser based finishing[J]. Physics Procedia, 2016, 83:258-263. [46] OBEIDI M A, MCCARTHY E, O'CONNELL B, et al. Laser polishing of additive manufactured 316L stainless steel synthesized by selective laser melting[J]. Materials, 2019, 12(6):991. [47] BORDATCHEV E V, HAFIZ A M K, TUTUNEA-FATAN O R. Performance of laser polishing in finishing of metallic surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):35-52. [48] PERRY T L, WERSCHMOELLER D, LI X C, et al. Pulsed laser polishing of micro-milled Ti6Al4V samples[J]. Journal of Manufacturing Processes, 2009, 11(2):74-81. [49] FANG Z H, LU L B, CHEN L F, et al. Laser polishing of additive manufactured superalloy[J]. Procedia CIRP, 2018, 71:150-154. [50] LAMIKIZ A, SÁNCHEZ J A, LÓPEZ DE LACALLE L N, et al. Laser polishing of parts built up by selective laser sintering[J]. International Journal of Machine Tools and Manufacture, 2007, 47(12-13):2040-2050. [51] ROSA B, MOGNOL P, HASCOËT J Y. Modelling and optimization of laser polishing of additive laser manufacturing surfaces[J]. Rapid Prototyping Journal, 2016, 22(6):956-964. [52] YUNG K C, XIAO T Y, CHOY H S, et al. Laser polishing of additive manufactured CoCr alloy components with complex surface geometry[J]. Journal of Materials Processing Technology, 2018, 262:53-64. [53] 黄云, 肖贵坚, 邹莱. 整体叶盘抛光技术的研究现状及发展趋势[J]. 航空学报, 2016, 37(7):2045-2064. HUANG Y, XIAO G J, ZOU L. Current situation and development trend of polishing technology for blisk[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2045-2064(in Chinese). [54] GUO J, AU K H, SUN C N, et al. Novel rotating-vibrating magnetic abrasive polishing method for double-layered internal surface finishing[J]. Journal of Materials Processing Technology, 2019, 264:422-437. [55] NAGALINGAM A P, YUVARAJ H K, YEO S H. Synergistic effects in hydrodynamic cavitation abrasive finishing for internal surface-finish enhancement of additive-manufactured components[J]. Additive Manufacturing, 2020, 33:101110. [56] PYKA G, BURAKOWSKI A, KERCKHOFS G, et al. Surface modification of Ti6Al4V open porous structures produced by additive manufacturing[J]. Advanced Engineering Materials, 2012, 14(6):363-370. [57] DONG G Y, MARLEAU-FINLEY J, ZHAO Y F. Investigation of electrochemical post-processing procedure for Ti-6Al-4V lattice structure manufactured by direct metal laser sintering (DMLS)[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9-12):3401-3417. [58] KERCKHOFS G, PYKA G, BAEL S, et al. Of the influence of surface roughness modification of bone tissue engineering scaffolds on the morhology and mechanical properties[C]//SkyScan User Meeting, 2010 [59] MOHAMMADIAN N, TURENNE S, BRAILOVSKI V. Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing[J]. Journal of Materials Processing Technology, 2018, 252:728-738. [60] BAI Y C, ZHAO C L, YANG J, et al. Dry mechanical-electrochemical polishing of selective laser melted 316L stainless steel[J]. Materials & Design, 2020, 193:108840. [61] 庞桂兵. 电化学光整加工技术及在航空制造领域的应用探讨[J]. 航空制造技术, 2018, 61(3):26-32. PANG G B. Electrochemical finishing technology and its application in aviation manufacturing[J]. Aeronautical Manufacturing Technology, 2018, 61(3):26-32(in Chinese). [62] YI R, ZHANG Y, ZHANG X Q, et al. A generic approach of polishing metals via isotropic electrochemical etching[J]. International Journal of Machine Tools and Manufacture, 2020, 150:103517. |