1 |
MAJID T, JO B W. Status and challenges on design and implementation of camber morphing mechanisms[J]. International Journal of Aerospace Engineering, 2021, 2021: 1-14.
|
2 |
YOU H, KIM S, JOE W Y, et al. New concept for aircraft morphing wing skin: Design, modeling, and analysis[J]. AIAA Journal, 2019, 57(5): 1786-1792.
|
3 |
YU J R, MA J Y. Design and shear analysis of an angled morphing wing skin module[J]. Applied Sciences, 2022, 12(6): 3092.
|
4 |
尹维龙, 石庆华. 变体飞行器蒙皮材料与结构研究综述[J]. 航空制造技术, 2017, 60(17): 24-29.
|
|
YIN W L, SHI Q H. Review of material and structure for morphing aircraft skin[J]. Aeronautical Manufacturing Technology, 2017, 60(17): 24-29 (in Chinese).
|
5 |
ZHENG J L, LI R F, ZHONG W H, et al. A bio-OCLC structure equating to a movable unit of a lattice cellular core for hybrid in-plane morphing applications[J]. Composite Structures, 2020, 235: 111762.
|
6 |
WANG Z G. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering, 2019, 166: 731-741.
|
7 |
王佳铭, 李志刚, 梁方正, 等. 面向直升机抗坠毁的新型夹心八边形蜂窝设计、仿真和理论研究[J]. 航空学报, 2022, 43(5): 225244.
|
|
WANG J M, LI Z G, LIANG F Z, et al. Design, simulation and theoretical study on novel cored octagon honeycomb for helicopter crashworthiness[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 225244 (in Chinese).
|
8 |
BUBERT E A, WOODS B K S, LEE K, et al. Design and fabrication of a passive 1d morphing aircraft skin[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1699-1717.
|
9 |
CHEN J J, SHEN X, LI J F. Zero Poisson’s ratio flexible skin for potential two-dimensional wing morphing[J]. Aerospace Science and Technology, 2015, 45: 228-241.
|
10 |
HARKATI E, DAOUDI N, BEZAZI A, et al. In-plane elasticity of a multi re-entrant auxetic honeycomb[J]. Composite Structures, 2017, 180: 130-139.
|
11 |
ZHANG X L, TIAN R L, ZHANG Z W, et al. In-plane elasticity of a novel vertical strut combined re-entrant honeycomb structure with negative Poisson’s ratio[J]. Thin-Walled Structures, 2021, 163: 107634.
|
12 |
LIU W D, ZHU H, ZHOU S Q, et al. In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing[J]. Chinese Journal of Aeronautics, 2013, 26(4): 935-942.
|
13 |
JHA A, DAYYANI I. Shape optimisation and buckling analysis of large strain zero Poisson’s ratio fish-cells metamaterial for morphing structures[J]. Composite Structures, 2021, 268: 113995.
|
14 |
程文杰, 周丽, 张平, 等. 零泊松比十字形混合蜂窝设计分析及其在柔性蒙皮中的应用[J]. 航空学报, 2015, 36(2): 680-690.
|
|
CHENG W J, ZHOU L, ZHANG P, et al. Design and analysis of a zero Poisson’s ratio mixed cruciform honeycomb and its application in flexible skin[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 680-690 (in Chinese).
|
15 |
ALSAIDI B, JOE W Y, AKBAR M. Computational analysis of 3D lattice structures for skin in real-scale camber morphing aircraft[J]. Aerospace, 2019, 6(7): 79.
|
16 |
YOU H, KIM S, YUN G J. Design criteria for variable camber compliant wing aircraft morphing wing skin[J]. AIAA Journal, 2019, 58(2): 867-878.
|
17 |
于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1-14.
|
|
YU J J, XIE Y, PEI X. State-of-art of metamaterials with negative Poisson’s ratio[J]. Journal of Mechanical Engineering, 2018, 54(13): 1-14 (in Chinese).
|
18 |
陈以金. 变体飞行器柔性蒙皮及支撑结构性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 20-36.
|
|
CHEN Y J. Study on flexible skin and supporting substructure of morphing aircraft[D]. Harbin: Harbin Institute of Technology, 2014: 20-36 (in Chinese).
|
19 |
OLYMPIO K R, GANDHI F. Zero Poisson’s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1737-1753.
|
20 |
CHEN Y, FU M H. Design and modeling of a combined embedded enhanced honeycomb with tunable mechanical properties[J]. Applied Composite Materials, 2018, 25(5): 1041-1055.
|
21 |
GONG X B, HUANG J, SCARPA F, et al. Zero Poisson’s ratio cellular structure for two-dimensional morphing applications[J]. Composite Structures, 2015, 134: 384-392.
|