ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2021, Vol. 42 ›› Issue (10): 524787-524787.doi: 10.7527/S1000-6893.2020.24787
• Review • Previous Articles Next Articles
CHEN Xiangming1, YAO Liaojun2, GUO Licheng2, SUN Yi2
Received:
2020-09-23
Revised:
2020-10-14
Published:
2020-12-08
Supported by:
CLC Number:
CHEN Xiangming, YAO Liaojun, GUO Licheng, SUN Yi. 3D printed continuous fiber-reinforced composites: State of the art and perspectives[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524787-524787.
[1] ISO/ASTM. Additive manufacturing-General principles-Terminology:52900-2015[S]. Geneva:ISO, 2015. [2] 魏青松, 史玉升. 增材制造技术原理与应用[M]. 北京:科学出版社, 2017:1-7. WEI Q S, SHI Y S. The theory and application of additive manufacturing[M]. Beijing:Science Press, 2017:1-7(in Chinese). [3] 刘腾飞, 田小永, 朱伟军, 等. 连续碳纤维增强聚乳酸复合材料3D打印及回收再利用机理与性能[J]. 机械工程学报, 2019, 55(7):128-134. LIU T F, TIAN X Y, ZHU W J, et al. Mechanism and performance of 3D printing and recycling for continuous carbon fiber reinforced PLA composites[J]. Journal of Mechanical Engineering, 2019, 55(7):128-134(in Chinese). [4] 张肖男, 单忠德, 范聪泽, 等. 增材制造用PLA/连续碳纤复合材料力学性能[J]. 工程塑料应用, 2019, 47(8):91-95. ZHANG X N, SHAN Z D, FAN C Z, et al. Mechanical properties of PLA/continuous carbon fiber composites by additive manufacturing[J]. Engineering Plastics Application, 2019, 47(8):91-95(in Chinese). [5] 耿鹏. 聚醚醚酮及其复合材料增材制造机理与实验研究[D]. 长春:吉林大学, 2019. GENG P. Research on additive manufacturing mechanism of polyetheretherketone and its composites[D]. Changchun:Jilin University, 2019(in Chinese). [6] WANG X, JIANG M, ZHOU Z W, et al. 3D printing of polymer matrix composites:A review and prospective[J]. Composites Part B:Engineering, 2017, 110:442-458. [7] PARANDOUSH P, LIN D. A review on additive manufacturing of polymer-fiber composites[J]. Composite Structures, 2017, 182:36-53. [8] 毕向军, 田小永, 张帅, 等. 连续纤维增强热塑性复合材料3D打印的研究进展[J]. 工程塑料应用, 2019, 47(2):138-142. BI X J, TIAN X Y, ZHANG S, et al. Research progress in 3D printing technology of continuous fiber reinforced thermoplastic composites[J]. Engineering Plastics Application, 2019, 47(2):138-142(in Chinese). [9] BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers:A review[J]. Additive Manufacturing, 2018, 21:1-16. [10] THOMPSON M K, MORONI G, VANEKER T, et al. Design for additive manufacturing:Trends, opportunities, considerations, and constraints[J]. CIRP Annals, 2016, 65(2):737-760. [11] 杰里米·里夫金. 第三次工业革命[M]. 张体伟, 孙豫宁, 译. 北京:中信出版社, 2012:27-141. RIFKIN J. The third industrial revolution[M]. ZHANG T W, SUN Y N, translated. Beijing:CITIC Press, 2012:27-141(in Chinese). [12] 姚俊峰, 张俊, 阙锦龙. 3D打印理论与应用[M]. 北京:科学出版社, 2017:15-37. YAO J F, ZHANG J, QUE J L. The theory and application of 3D printing[M]. Beijing:Science Press, 2017:15-37(in Chinese). [13] 国家制造强国建设战略咨询委员会, 中国工程院战略咨询中心. 《中国制造2025》重点领域技术创新绿皮书——技术路线图(2017)[M]. 北京:电子工业出版社, 2018:35-108, 233-295. National Manufacturing Strategy Advisory Committee, Chinese Academy of Engineering of Chinese Academy of Engineering. 《Made in China 2025》Green book for technological innovation in key fields-Technology Roadmap (2017)[M]. Beijing:Publishing House of Electronics Industry, 2018:35-108, 233-295(in Chinese). [14] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese). [15] 闫东东, 单忠德, 战丽, 等. 3D打印复合材料开孔板力学性能影响规律[J]. 中国机械工程, 2020, 31(10):1240-1245. YAN D D, SHAN Z D, ZHAN L, et al. Influences law of mechanics properties of 3D printing composite open-hole plates[J]. China Mechanical Engineering, 2020, 31(10):1240-1245(in Chinese). [16] 田小永, 刘腾飞, 杨春成, 等. 高性能纤维增强树脂基复合材料3D打印及其应用探索[J]. 航空制造技术, 2016, 59(15):26-31. TIAN X Y, LIU T F, YANG C C, et al. 3D printing for high performance fiber reinforced polymer composites and exploration on its applications[J]. Aeronautical Manufacturing Technology, 2016, 59(15):26-31(in Chinese). [17] 罗盟, 田小永, 尚俊凡, 等. 高性能纤维增强聚醚醚酮复合材料挤出成型增材制造现状与挑战[J]. 航空制造技术, 2020, 63(15):39-47. LUO M, TIAN X Y, SHANG J F, et al. Status and challenge of materials extrusion additive manufacturing for high-performance fiber reinforced poly(ether ether ketone) composites[J]. Aeronautical Manufacturing Technology, 2020, 63(15):39-47(in Chinese). [18] 田小永, 侯章浩, 张俊康, 等. 高性能树脂基复合材料轻质结构3D打印与性能研究[J]. 航空制造技术, 2017, 60(10):34-39. TIAN X Y, HOU Z H, ZHANG J K, et al. Study on 3D printing process and performance of resin matrix composite lightweight structure[J]. Aeronautical Manufacturing Technology, 2017, 60(10):34-39(in Chinese). [19] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports, 2016, 6:23058. [20] GRAY IV R W, BAIRD D G, BØHN J H. Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling[J]. Polymer Composites, 1998, 19(4):383-394. [21] MELENKA G W, CHEUNG B K O, SCHOFIELD J S, et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures[J]. Composite Structures, 2016, 153:866-875. [22] BLOK L G, LONGANA M L, YU H, et al. An investigation into 3D printing of fibre reinforced thermoplastic composites[J]. Additive Manufacturing, 2018, 22:176-186. [23] AKASHEH F, AGLAN H. Fracture toughness enhancement of carbon fiber-reinforced polymer composites utilizing additive manufacturing fabrication[J]. Journal of Elastomers & Plastics, 2019, 51(7-8):698-711. [24] CHACÓN J M, CAMINERO M A, NÚÑEZ P J, et al. Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling:Effect of process parameters on mechanical properties[J]. Composites Science and Technology, 2019, 181:107688. [25] JUSTO J, TÁVARA L, GARCÍA-GUZMÁN L, et al. Characterization of 3D printed long fibre reinforced composites[J]. Composite Structures, 2018, 185:537-548. [26] VAN DER KLIFT F, KOGA Y, TODOROKI A, et al. 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens[J]. Open Journal of Composite Materials, 2016, 6(1):18-27. [27] DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing, 2017, 16:146-152. [28] GOH G D, DIKSHIT V, NAGALINGAM A P, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design, 2018, 137:79-89. [29] CHABAUD G, CASTRO M, DENOUAL C, et al. Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications[J]. Additive Manufacturing, 2019, 26:94-105. [30] OZTAN C, KARKKAINEN R, FITTIPALDI M, et al. Microstructure and mechanical properties of three dimensional-printed continuous fiber composites[J]. Journal of Composite Materials, 2019, 53(2):271-280. [31] AL ABADI H, THAI H T, PATON-COLE V, et al. Elastic properties of 3D printed fibre-reinforced structures[J]. Composite Structures, 2018, 193:8-18. [32] GOH G D, YAP Y L, AGARWALA S, et al. Recent progress in additive manufacturing of fiber reinforced polymer composite[J]. Advanced Materials Technologies, 2019, 4(1):1800271. [33] MEI H, ALI Z, YAN Y K, et al. Influence of mixed isotropic fiber angles and hot press on the mechanical properties of 3D printed composites[J]. Additive Manufacturing, 2019, 27:150-158. [34] PYL L, KALTEREMIDOU K A, VAN HEMELRIJCK D. Exploration of the design freedom of 3D printed continuous fibre-reinforced polymers in open-hole tensile strength tests[J]. Composites Science and Technology, 2019, 171:135-151. [35] YANG C C, TIAN X Y, LIU T F, et al. 3D printing for continuous fiber reinforced thermoplastic composites:Mechanism and performance[J]. Rapid Prototyping Journal, 2017, 23(1):209-215. [36] TIAN X Y, LIU T F, WANG Q R, et al. Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites[J]. Journal of Cleaner Production, 2017, 142:1609-1618. [37] LI N Y, LI Y G, LIU S T. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing[J]. Journal of Materials Processing Technology, 2016, 238:218-225. [38] MING Y K, DUAN Y G, WANG B, et al. A novel route to fabricate high-performance 3D printed continuous fiber-reinforced thermosetting polymer composites[J]. Materials (Basel, Switzerland), 2019, 12(9):1369. [39] VAN DE WERKEN N, HURLEY J, KHANBOLOUKI P, et al. Design considerations and modeling of fiber reinforced 3D printed parts[J]. Composites Part B:Engineering, 2019, 160:684-692. [40] 杨卫民, 鉴冉冉. 聚合物3D打印与3D复印技术[M]. 北京:化学工业出版社, 2018:1-14. YANG W M, JIAN R R. Polymer 3D printing technology[M]. Beijing:Chemical Industry Press, 2018:1-14(in Chinese). [41] PARANDOUSH P, TUCKER L, ZHOU C, et al. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites[J]. Materials & Design, 2017, 131:186-195. [42] ZINDANI D, KUMAR K. An insight into additive manufacturing of fiber reinforced polymer composite[J]. International Journal of Lightweight Materials and Manufacture, 2019, 2(4):267-278. [43] NIKZAD M, MASOOD S H, SBARSKI I. Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling[J]. Materials & Design, 2011, 32(6):3448-3456. [44] LI Y, FENG Z Y, HUANG L J, et al. Additive manufacturing high performance graphene-based composites:A review[J]. Composites Part A:Applied Science and Manufacturing, 2019, 124:105483. [45] GNANASEKARAN K, HEIJMANS T, VAN BENNEKOM S, et al. 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition modeling[J]. Applied Materials Today, 2017, 9:21-28. [46] BERRETTA S, DAVIES R, SHYNG Y T, et al. Fused Deposition Modelling of high temperature polymers:Exploring CNT PEEK composites[J]. Polymer Testing, 2017, 63:251-262. [47] VAN DE WERKEN N, TEKINALP H, KHANBOLOUKI P, et al. Additively manufactured carbon fiber-reinforced composites:State of the art and perspective[J]. Additive Manufacturing, 2020, 31:100962. [48] GOH G D, YAP Y L, TAN H K J, et al. Process-structure-properties in polymer additive manufacturing via material extrusion:A review[J]. Critical Reviews in Solid State and Materials Sciences, 2020, 45(2):113-133. [49] DOMINGO-ESPIN M, PUIGORIOL-FORCADA J M, GARCIA-GRANADA A A, et al. Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts[J]. Materials & Design, 2015, 83:670-677. [50] SHI B H, SHANG Y Y, ZHANG P, et al. Dynamic capillary-driven additive manufacturing of continuous carbon fiber composite[J]. Matter, 2020, 2(6):1594-1604. [51] 明越科, 段玉岗, 王奔, 等. 高性能纤维增强树脂基复合材料3D打印[J]. 航空制造技术, 2019, 62(4):34-38, 46. MING Y K, DUAN Y G, WANG B, et al. 3D printing for high performance fiber reinforced polymer composites[J]. Aeronautical Manufacturing Technology, 2019, 62(4):34-38, 46(in Chinese). [52] ABBOTT A, GIBSON T, TANDON G P, et al. Melt extrusion and additive manufacturing of a thermosetting polyimide[J]. Additive Manufacturing, 2021, 37:101636. [53] HAO W F, LIU Y, ZHOU H, et al. Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites[J]. Polymer Testing, 2018, 65:29-34. [54] MING Y K, ZHANG S Q, HAN W, et al. Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites[J]. Additive Manufacturing, 2020, 33:101184. [55] KABIR S M F, MATHUR K, SEYAM A F M. A critical review on 3D printed continuous fiber-reinforced composites:History, mechanism, materials and properties[J]. Composite Structures, 2020, 232:111476. [56] CINCINNATI INC. Homepage[EB/OL]. 2020.http://www.e-c.com. [57] HASSEN A A, SPRINGFIELD R, LINDAHL J, et al. The durability of large-scale additive manufacturing composite molds[C]//CAMX Conference Proceedings. Arlington:American Composites Manufacturers Association, 2016. [58] THERMWOOD. Homepage[EB/OL]. 2020.http://www.thermwood.com. [59] SUN Q, RIZVI G M, BELLEHUMEUR C T, et al. Effect of processing conditions on the bonding quality of FDM polymer filaments[J]. Rapid Prototyping Journal, 2008, 14(2):72-80. [60] TIAN X Y, LIU T F, YANG C C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A:Applied Science and Manufacturing, 2016, 88:198-205. [61] LIU T F, TIAN X Y, ZHANG M Y, et al. Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 114:368-376. [62] 单忠德, 范聪泽, 孙启利, 等. 纤维增强树脂基复合材料增材制造技术与装备研究[J]. 中国机械工程, 2020, 31(2):221-226. SHAN Z D, FAN C Z, SUN Q L, et al. Research on additive manufacturing technology and equipment for fiber reinforced resin composites[J]. China Mechanical Engineering, 2020, 31(2):221-226(in Chinese). [63] YOUNG D, WETMORE N, CZABAJ M. Interlayer fracture toughness of additively manufactured unreinforced and carbon-fiber-reinforced acrylonitrile butadiene styrene[J]. Additive Manufacturing, 2018, 22:508-515. [64] ALIHEIDARI N, TRIPURANENI R, AMELI A, et al. Fracture resistance measurement of fused deposition modeling 3D printed polymers[J]. Polymer Testing, 2017, 60:94-101. [65] NING F D, CONG W L, HU Y B, et al. Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling:Effects of process parameters on tensile properties[J]. Journal of Composite Materials, 2017, 51(4):451-462. [66] HOU Z H, TIAN X Y, ZHANG J K, et al. 3D printed continuous fibre reinforced composite corrugated structure[J]. Composite Structures, 2018, 184:1005-1010. [67] HU Q X, DUAN Y C, ZHANG H G, et al. Manufacturing and 3D printing of continuous carbon fiber prepreg filament[J]. Journal of Materials Science, 2018, 53(3):1887-1898. [68] CHACÓN J M, CAMINERO M A, GARCÍA-PLAZA E, et al. Additive manufacturing of PLA structures using fused deposition modelling:Effect of process parameters on mechanical properties and their optimal selection[J]. Materials & Design, 2017, 124:143-157. [69] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Composites Part B:Engineering, 2018, 148:93-103. [70] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing, 2018, 68:415-423. [71] Mark Forged. Homepage[EB/OL]. 2018. https://Markforged.com. [72] KOTLINSKI J. Mechanical properties of commercial rapid prototyping materials[J]. Rapid Prototyping Journal, 2014, 20(6):499-510. [73] LANZOTTI A, GRASSO M, STAIANO G, et al. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer[J]. Rapid Prototyping Journal, 2015, 21(5):604-617. [74] ISO/ASTM. Standard terminology for additive manufacturing-Coordinate system and test methodologies:52921-2013[S]. Geneva:ISO, 2013. [75] ARAYA-CALVO M, LÓPEZ-GÓMEZ I, CHAMBERLAIN-SIMON N, et al. Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology[J]. Additive Manufacturing, 2018, 22:157-164. [76] JANSSON A, PEJRYD L. Characterisation of carbon fibre-reinforced polyamide manufactured by selective laser sintering[J]. Additive Manufacturing, 2016, 9:7-13. [77] ONWUBOLU G C, RAYEGANI F. Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process[J]. International Journal of Manufacturing Engineering, 2014:598531. [78] SOOD A K, OHDAR R K, MAHAPATRA S S. Parametric appraisal of mechanical property of fused deposition modelling processed parts[J]. Materials & Design, 2010, 31(1):287-295. [79] PINHO S T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking:Part I:Development[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(1):63-73. [80] PUCK A, SCHVRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 1998, 58(7):1045-1067. [81] CHEN X M, SUN X S, WANG B W, et al. An improved longitudinal failure criterion for UD composites based on kinking model[J]. Mechanics of Advanced Materials and Structures, 2020:1-11. [82] 黄争鸣, 张华山. 纤维增强复合材料强度理论的研究现状与发展趋势:"破坏分析奥运会"评估综述[J]. 力学进展, 2007, 37(1):80-98. HUANG Z M, ZHANG H S. Current status and future trend of researches on the strength of fiber-reinforced composites-A summary of the results from a "failure Olympics"[J]. Advances in Mechanics, 2007, 37(1):80-98(in Chinese). [83] 姚辽军. 复合材料层间Ⅰ型静态及疲劳断裂机理研究[D]. 西安:西北工业大学, 2016. YAO L J. Mode Ⅰ quasi-static and fatigue delamination growth in composite laminates[D]. Xi'an:Northwestern Polytechnical University, 2016(in Chinese). [84] YAO L J, CUI H, SUN Y, et al. Fibre-bridged fatigue delamination in multidirectional composite laminates[J]. Composites Part A:Applied Science and Manufacturing, 2018, 115:175-186. [85] CHEN X M, SUN X S, CHEN P H, et al. A delamination failure criterion considering the effects of through-thickness compression on the interlaminar shear failure of composite laminates[J]. Composite Structures, 2020, 241:112121. [86] MAIMÍ P, CAMANHO P P, MAYUGO J A, et al. Matrix cracking and delamination in laminated composites. Part I:Ply constitutive law, first ply failure and onset of delamination[J]. Mechanics of Materials, 2011, 43(4):169-185. [87] MAIMÍ P, CAMANHO P P, MAYUGO J A, et al. A continuum damage model for composite laminates:Part I-Constitutive model[J]. Mechanics of Materials, 2007, 39(10):897-908. [88] GARCÍA-RODRÍGUEZ S M, COSTA J, MAIMÍ P, et al. Experimental demonstration of the in situ effect under transverse shear[J]. Composites Part A:Applied Science and Manufacturing, 2020, 138:106047. [89] ZUBILLAGA L, TURON A, RENART J, et al. An experimental study on matrix crack induced delamination in composite laminates[J]. Composite Structures, 2015, 127:10-17. [90] MORTELL D J, TANNER D A, MCCARTHY C T. In-situ SEM study of transverse cracking and delamination in laminated composite materials[J]. Composites Science and Technology, 2014, 105:118-126. [91] NING F D, CONG W L, QIU J J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling[J]. Composites Part B:Engineering, 2015, 80:369-378. [92] YEOLE P, HASSEN A A, KIM S, et al. Mechanical characterization of high-temperature carbon fiber-polyphenylene sulfide composites for large area extrusion deposition additive manufacturing[J]. Additive Manufacturing, 2020, 34:101255. [93] LUO M, TIAN X Y, SHANG J F, et al. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A:Applied Science and Manufacturing, 2019, 121:130-138. [94] 张曼玉, 刘腾飞, 田小永, 等. 面向3D打印的连续碳纤维上浆工艺及其对复合材料性能的影响[J]. 中国材料进展, 2020, 39(5):349-355, 363. ZHANG M Y, LIU T F, TIAN X Y, et al. Sizing process of continuous carbon fiber for 3D printing and its influence on the properties of composites[J]. Materials China, 2020, 39(5):349-355, 363(in Chinese). [95] 赵广宾, 秦勉, 刘雨, 等. 聚醚醚酮熔融沉积成形强度工艺参数的优化[J]. 机械工程学报, 2020, 56(3):216-222. ZHAO G B, QIN M, LIU Y, et al. Optimizing fused deposition molding process parameters for improving forming strength of polyetheretherketone[J]. Journal of Mechanical Engineering, 2020, 56(3):216-222(in Chinese). [96] WANG J L, XIE H M, WENG Z X, et al. A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling[J]. Materials & Design, 2016, 105:152-159. [97] BETTINI P, ALITTA G, SALA G, et al. Fused deposition technique for continuous fiber reinforced thermoplastic[J]. Journal of Materials Engineering and Performance, 2017, 26(2):843-848. [98] DICKSON A N, DOWLING D P. Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing[J]. Composite Structures, 2019, 212:381-388. [99] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1):522509. ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522509(in Chinese). [100] KISHORE V, AJINJERU C, NYCZ A, et al. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components[J]. Additive Manufacturing, 2017, 14:7-12. [101] DRANSFIELD K, BAILLIE C, MAI Y W. Improving the delamination resistance of CFRP by stitching-A review[J]. Composites Science and Technology, 1994, 50(3):305-317. [102] MOURITZ A P. Review of z-pinned composite laminates[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(12):2383-2397. [103] PEGORIN F, PINGKARAWAT K, DAYNES S, et al. Influence of z-pin length on the delamination fracture toughness and fatigue resistance of pinned composites[J]. Composites Part B:Engineering, 2015, 78:298-307. [104] STORCK S, MALECKI H, SHAH T, et al. Improvements in interlaminar strength:A carbon nanotube approach[J]. Composites Part B:Engineering, 2011, 42(6):1508-1516. [105] FALZON B G, HAWKINS S C, HUYNH C P, et al. An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface[J]. Composite Structures, 2013, 106:65-73. [106] 矫桂琼, 宁荣昌, 卢智先, 等. 层间增韧复合材料研究[J]. 宇航材料工艺, 2001, 31(4):36-39. JIAO G Q, NING R C, LU Z X, et al. A study on interleaved composites[J]. Aerospace Materials & Technology, 2001, 31(4):36-39(in Chinese). [107] HOJO M, ANDO T, TANAKA M, et al. Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf[J]. International Journal of Fatigue, 2006, 28(10):1154-1165. [108] DUTY C, FAILLA J, KIM S, et al. Z-pinning approach for 3D printing mechanically isotropic materials[J]. Additive Manufacturing, 2019, 27:175-184. [109] KIM S, SMITH T, FAILLA J, et al. Parametric analysis on vertical pins for strengthening extrusion-based printed parts[C]//SAMPE 2018. Diamond Bar:Society for the Advancement of Material and Process Engineering, 2018. [110] DUTY C, FAILLA J, KIM S, et al. Reducing mechanical anisotropy in extrusion-based printed parts[C]//Solid Freeform Fabrication:Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. Austin:University of Austin, 2017:1602-1612. [111] DUTY C, FAILLA J, KIM S, et al. Z-pining approach for reducing anisotropy of 3D printed parts[C]//Solid Freeform Fabrication:Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. Austin:University of Austin, 2018:2405-2412. [112] ISLAM M S, PRABHAKAR P. Interlaminar strengthening of multidirectional laminates using polymer additive manufacturing[J]. Materials & Design, 2017, 133:332-339. [113] DAMODARAN V, CASTELLANOS A G, MILOSTAN M, et al. Improving the Mode-II interlaminar fracture toughness of polymeric matrix composites through additive manufacturing[J]. Materials & Design, 2018, 157:60-73. [114] NARANJO-LOZADA J, AHUETT-GARZA H, ORTA-CASTAÑÓN P, et al. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing[J]. Additive Manufacturing, 2019, 26:227-241. [115] YU T, ZHANG Z Y, SONG S T, et al. Tensile and flexural behaviors of additively manufactured continuous carbon fiber-reinforced polymer composites[J]. Composite Structures, 2019, 225:111147. [116] MELENKA G W, SCHOFIELD J S, DAWSON M R, et al. Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer[J]. Rapid Prototyping Journal, 2015, 21(5):618-627. [117] ZHANG H Q, YANG D M, SHENG Y. Performance-driven 3D printing of continuous curved carbon fibre reinforced polymer composites:A preliminary numerical study[J]. Composites Part B:Engineering, 2018, 151:256-264. |
[1] | Kaiming ZHANG, Kelu WANG, Shiqiang LU, Mutong LIU, Ping ZHONG, Ye TIAN. Thermal deformation behavior of S280 ultra-high strength stainless steel based on response surface methodology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427293-427293. |
[2] | Zhiqiang ZHANG, Ziming YU, Tiangang ZHANG, Qian YANG, Hao WANG. Microstructure of TiC x reinforced Ti-based composite coating prepared by laser cladding and first principle study on reinforced phase [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427294-427294. |
[3] | Zhichuang CHEN, Shenghong GE, Zhuolei ZHANG, Yuchuan ZHU. Internal leakage distribution model and parameter sensitivity analysis of spool valve couple at zero position [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 427004-427004. |
[4] | ZHAO Tian, LI Ying, ZHANG Chao, YAO Liaojun, HUANG Yixing, HUANG Zhixin, CHEN cheng, WANG Wandong, ZU Lei, ZHOU Huamin, QIU Jinhao, QIU Zhiping, FANG Daining. Fundamental mechanical problems in high-performance aerospace composite structures: State-of-art review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526851-526851. |
[5] | LIU Zengfei, LIU Kai, ZHANG Binbin, LI Xuefeng, GE Jingran, HUANG Jian, LI Chao, SUN Xinyang, SUN Yu, LIANG Jun. Effect of yarn size on tensile properties of 3D woven composites [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 525453-525453. |
[6] | WANG Bin, WANG Haitao, WANG Yufeng, ZHANG Wenwu. Water-assisted laser scanning machining test of thermal barrier coating [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525353-525353. |
[7] | YANG Guang, LIU Xuedong, WANG Congwei, WANG Congyu, LIU Dazhi. SLM element burning behavior of magnesium alloy based on temperature field simulation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525639-525639. |
[8] | CHEN Bo, MENG Zheng, MA Chengyuan, XI Xin, WANG Xinxin, TAN Caiwang, SONG Xiaoguo. Welding properties and molten pool flow behavior of TC4 titanium alloy by oscillating galvanometer laser [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525223-525223. |
[9] | LI Dichen, LU Zhongliang, TIAN Xiaoyong, ZHANG Hang, YANG Chuncheng, CAO Yi, MIAO Kai. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525387-525387. |
[10] | ZHAO Kehan, LIU Duo, ZHU Haitao, CHEN Bin, HU Shengpeng, SONG Xiaoguo. Effect of brazing temperature on microstructure and mechanical property of C/C/AgCuTi+Cf/TC4 joint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525007-525007. |
[11] | WANG Miao, WANG Wei, YANG Yunlong, TAN Caiwang, WANG Gang. Effect of brazing time on microstructure and properties of SiC ceramic brazed with CoFeNiCrCu [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525057-525057. |
[12] | LI Xiaopeng, HAN Rui, QIAN Xusheng, ZHANG Binggang, WANG Kehong. Effect of adding boron element on microstructure and shear strength of Ni-25at%Si/Ti600 joint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625069-625069. |
[13] | YANG Bingxin, MA Yunwu, SHAN He, YANG Tianhao, SUN Jing, LI Yongbing. Mechanical performance of friction self-piercing riveted joint for 2A12-T4 aluminum alloy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625111-625111. |
[14] | LU Chuanyang, CHEN Gangqiang, TANG Xiatao, HE Yanming, YANG Jianguo, ZHENG Wenjian, MA Yinghe, LI Huaxin, GAO Zengliang. Microstructure and mechanical properties of Hastelloy N superalloy joints brazed using BNi71CrSi filler alloy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625040-625040. |
[15] | PENG Jinfeng, WU Dongrun, CUI Weiyun, CAI Deng'an, ZHOU Guangming. Design and analysis of simulated ice with 3D printed sandwich composite material [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 224536-224536. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341