[1] 苏大鹏. 镁合金新材料加工工艺研究[J]. 中国新技术新产品, 2015(7):48. SU D P. Research on processing technology of new magnesium alloy materials[J]. New Technology & New Products of China, 2015(7):48(in Chinese). [2] 杨胶溪, 吴文亮, 王长亮, 等. 激光选区熔化技术在航空航天领域的发展现状及典型应用[J]. 航空材料学报, 2021, 41(2):1-15. YANG J X, WU W L, WANG C L, et al. Development status and typical application of selective laser melting technology applications in aerospace field[J]. Journal of Aeronautical Materials, 2021, 41(2):1-15(in Chinese). [3] 岳彦芳, 马方正, 李建辉, 等. AZ91D镁合金激光熔化成型工艺参数优化[J]. 河北工业科技, 2018, 35(4):278-282. YUE Y F, MA F Z, LI J H, et al. Process parameters optimization of selective laser melting molding of AZ91D magnesium alloy[J]. Hebei Journal of Industrial Science and Technology, 2018, 35(4):278-282(in Chinese). [4] 丁文江, 吴国华, 李中权, 等. 轻质高性能镁合金开发及其在航天航空领域的应用[J]. 上海航天, 2019, 36(2):1-8. DING W J, WU G H, LI Z Q, et al. Development of high-performance light-mass magnesium alloys and applications in aerospace and aviation fields[J]. Aerospace Shanghai, 2019, 36(2):1-8(in Chinese). [5] 吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望[J]. 载人航天, 2016, 22(3):281-292. WU G H, CHEN Y S, DING W J. Current research, application and future prospect of magnesium alloys in aerospace industry[J]. Manned Spaceflight, 2016, 22(3):281-292(in Chinese). [6] PARANDE G, MANAKARI V, MEENASHISUNDARAM G K, et al. Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates[J]. International Journal of Materials Research, 2016, 107(12):1091-1099. [7] 尹林, 黄华, 袁广银, 等. 可降解镁合金临床应用的最新研究进展[J]. 中国材料进展, 2019, 38(2):126-137. YIN L, HUANG H, YUAN G Y, et al. Latest research progress of biodegradable magnesium alloys in clinical applications[J]. Materials China, 2019, 38(2):126-137(in Chinese). [8] 申琦, 余森, 牛金龙, 等. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(增刊1):278-282. SHEN Q, YU S, NIU J L, et al. Selective laser melting of magnesium-based materials:A review[J]. Materials Reports, 2019, 33(Sup.1):278-282(in Chinese). [9] DENG Q C, WU Y J, LUO Y H, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting[J]. Materials Characterization, 2020, 165:110377. [10] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese). [11] 王茂松, 杜宇雷. 增材制造钛铝合金研究进展[J]. 航空学报, 2021, 42(7):625263. WANG M S, DU Y L. Research progress of additive manufacturing of TiAl alloys[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7):625263(in Chinese). [12] 程龙. 选区激光熔化纯镁成型组织与腐蚀机理的研究[D]. 重庆:重庆大学, 2016:6-7. CHENG L. Study on microstructure and corrosion mechanism of selective laser melting magnesium alloy[D]. Chongqing:Chongqing University, 2016:6-7(in Chinese). [13] WEI K W, WANG Z M, ZENG X Y. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components[J]. Materials Letters, 2015, 156:187-190. [14] WEI K W, GAO M, WANG Z M, et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy[J]. Materials Science and Engineering:A, 2014, 611:212-222. [15] ATTAR H, PRASHANTH K G, ZHANG L C, et al. Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting[J]. Journal of Materials Science & Technology, 2015, 31(10):1001-1005. [16] HU D, WANG Y, ZHANG D F, et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium[J]. Materials and Manufacturing Processes, 2015, 30(11):1298-1304. [17] 谢辙. 选区激光熔化成形AZ91D镁合金的工艺与机理研究[D]. 武汉:华中科技大学, 2013:17-29. XIE Z. Research on processing and mechanism of AZ91D magnesium alloy by selective laser melting[D]. Wuhan:Huazhong University of Science and Technology, 2013:17-29(in Chinese). [18] 胡国文. 选区激光熔化成形ZK61镁合金的工艺与机理研究[D]. 武汉:华中科技大学, 2013:33-41. HU G W. Research on processing and forming mechanism of ZK61 magnesium alloy by selective laser melting[D]. Wuhan:Huazhong University of Science and Technology, 2013:33-41(in Chinese). [19] 魏恺文, 王泽敏, 曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损[J]. 金属学报, 2016, 52(2):184-190. WEI K W, WANG Z M, ZENG X Y. Element loss of AZ91D magnesium alloy during selective laser melting process[J]. Acta Metallurgica Sinica, 2016, 52(2):184-190(in Chinese). [20] ZHANG B C, DEMBINSKI L, CODDET C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder[J]. Materials Science and Engineering:A, 2013, 584:21-31. [21] GUSAROV A V, LAOUI T, FROYEN L, et al. Contact thermal conductivity of a powder bed in selective laser sintering[J]. International Journal of Heat and Mass Transfer, 2003, 46(6):1103-1109. [22] XIAO D M, HE K F, WANG D. Transient temperature evolution of selective laser melting process based on multilayer finite element model[J]. Infrared and Laser Engineering, 2015, 44(9):2672-2678(in Chinese). [23] 姜献峰, 宋荣伟, 熊志越, 等. 316L金属粉末选择性激光熔化瞬态温度场的模拟[J]. 应用激光, 2015, 35(6):648-651. JIANG X F, SONG R W, XIONG Z Y, et al. The transient simulation for temperature field of selective laser melting of 316L metal powder[J]. Applied Laser, 2015, 35(6):648-651(in Chinese). [24] 王佳琛. Inconel 718合金选区激光熔化温度场及微熔池传热研究[D]. 哈尔滨:哈尔滨工业大学, 2016:23-24. WANG J C. Research on the temperature field and the heat transfer of tiny molten pool during selective laser melting of Inconel 718[D]. Harbin:Harbin Institute of Technology, 2016:23-24(in Chinese). [25] 朱润东, 李志勇, 李晓锡, 等. AZ91D镁合金表面激光熔覆Al-Cu合金的温度场模拟与验证[J]. 表面技术, 2014, 43(6):84-89, 130. ZHU R D, LI Z Y, LI X X, et al. Simulation and experimental verification of laser cladding temperature field for Al-Cu alloy on AZ91D magnesium alloy surface[J]. Surface Technology, 2014, 43(6):84-89, 130(in Chinese). [26] 周华. 激光选区熔化成形ZK61镁合金工艺及组织性能研究[D]. 武汉:华中科技大学, 2019:37-38. ZHOU H. Study on process and microstructure and properties of ZK61 magnesium alloy by selective laser melting[D]. Wuhan:Huazhong University of Science and Technology, 2019:37-38(in Chinese). [27] 曹龙超, 周奇, 韩远飞, 等. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报, 2021, 42(10):524790. CAO L C, ZHOU Q, HAN Y F, et al. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):524790(in Chinese). [28] 刘帅. AZ61镁合金选择性激光熔化工艺与性能研究[D]. 北京:北京科技大学, 2020. LIU S. Research on the process and properties of AZ61 magnesium alloy fabricated by selective laser melting[D]. Beijing:University of Science and Technology Beijing, 2020(in Chinese). [29] BLOCK-BOLTEN A, EAGAR T W. Metal vaporization from weld pools[J]. Metallurgical Transactions:B, 1984, 15(3):461-469. [30] GALE W F, TOTEMEIER T C. Smithells metals reference book[M]. Berlin:Elsevier, 2003:8. [31] 成雅徽. GH4169合金粉末选区激光熔化成形数值模拟及试验研究[D]. 太原:中北大学, 2016:27-30. CHENG Y H. Numerical simulation and experimental research of selective laser melting on nickel based alloy powder GH4169[D]. Taiyuan:North University of China, 2016:27-30(in Chinese). [32] 顾冬冬, 张晗, 刘刚, 等. 稀土改性高强铝微桁架激光增材制造工艺调控[J]. 航空学报, 2021, 42(10):524868. GU D D, ZHANG H, LIU G, et al. Process optimization of additive manufactured sandwich panel structure using rare earth element modified high-performance Al alloy[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):524868(in Chinese). |