[1] WINDHORST T, BLOUNT G. Carbon-carbon composites:A summary of recent developments and applications[J]. Materials & Design, 1997, 18(1):11-15. [2] DHAKATE R S, AOKI T, OGASAWARA T. High temperature tensile properties of 2D cross-ply carbon-carbon composites[J]. Advanced Materials Letters, 2011, 2(2):106-112. [3] 李湘郡, 李彦斌, 郭飞, 等. C/C复合材料的压缩强度分布与可靠性评估[J]. 航空学报, 2019, 40(8):222853. LI X J, LI Y B, GUO F, et al. Compression strength distribution and reliability assessment of C/C composites[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):222853(in Chinese). [4] 程晖, 樊新田, 徐冠华, 等. 航空复合材料结构精密干涉连接技术综述[J]. 航空学报, 2021, 42(10):524876. CHENG H, FAN X T, XU G H, et al. State of the art of precise interference-fit technology for composite structures in aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):524876(in Chinese). [5] MOUTIS N V, JIMENEZ C, AZPIROZ X, et al. Brazing of carbon-carbon composites to Nimonic alloys[J]. Journal of Materials Science, 2010, 45(1):74-81. [6] SINGH M, ASTHANA R, SHPARGEL T P. Brazing of carbon-carbon composites to Cu-clad molybdenum for thermal management applications[J]. Materials Science and Engineering:A, 2007, 452-453:699-704. [7] SINGH M, ASTHANA R. Characterization of brazed joints of CC composite to Cu-clad-Molybdenum[J]. Composites Science and Technology, 2008, 68(14):3010-3019. [8] WANG Y L, WANG W L, HUANG J H, et al. Reactive composite brazing of C/C composite and GH3044 with Ag-Ti mixed powder filler material[J]. Materials Science and Engineering:A, 2019, 759:303-312. [9] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese). [10] ZHOU Y G, ZENG W D, YU H Q. An investigation of a new near-Beta forging process for titanium alloys and its application in aviation components[J]. Materials Science and Engineering:A, 2005, 393(1-2):204-212. [11] LIU J, LU J, WANG X, et al. Corrosion fatigue performance of TC4 plates with holes in aviation kerosene[J]. Aerospace Science and Technology, 2015, 47:420-424. [12] 周显光, 张福勤, 于奇, 等. Ag-Cu-Ti钎料连接C/C复合材料与钛合金的界面显微组织分析[J]. 材料研究与应用, 2013, 7(2):67-71. ZHOU X G, ZHANG F Q, YU Q, et al. Microstructure analyses on joint of carbon/carbon composites and titanium alloy using Ag-Cu-Ti as brazing metal[J]. Materials Research and Application, 2013, 7(2):67-71(in Chinese). [13] SHEN Y X, LI Z L, HAO C Y, et al. A novel approach to brazing C/C composite to Ni-based superalloy using alumina interlayer[J]. Journal of the European Ceramic Society, 2012, 32(8):1769-1774. [14] WANG H Q, CAO J, FENG J C. Brazing mechanism and infiltration strengthening of CC composites to TiAl alloys joint[J]. Scripta Materialia, 2010, 63(8):859-862. [15] SHEN Y X, LI Z L, HAO C Y, et al. Joining C/C composite to copper using active Cu-3.5Si braze[J]. Journal of Nuclear Materials, 2012, 421(1-3):28-31. [16] HAO Z T, WANG D P, YANG Z W, et al. Microstructure and mechanical properties of Ti2AlNb alloy and C/C composite joints brazed with Ag-Cu-Zn and Ag-Cu-Zn/Cu/Ag-Cu-Ti filler metals[J]. Archives of Civil and Mechanical Engineering, 2019, 19(4):1083-1094. [17] 王泽宇, 霸金, 马蔷, 等. 纳米材料增强复合钎料的研究进展[J]. 精密成形工程, 2018, 10(1):82-90. WANG Z Y, BA J, MA Q, et al. Research progress on nanomaterial reinforced composite brazing filler[J]. Journal of Netshape Forming Engineering, 2018, 10(1):82-90(in Chinese). [18] CUI B, HUANG J H, CAI C, et al. Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti-Zr-Cu-Ni)+W composite filler materials[J]. Composites Science and Technology, 2014, 97:19-26. [19] 刘多, 李星仪, 赵可汗, 等. CNTs对TC4与C/C复合材料钎焊接头组织及力学性能的影响[J]. 焊接学报, 2020, 41(4):1-5, 97. LIU D, LI X Y, ZHAO K H, et al. Effect of CNTs on microstructure and mechanical properties of TC4 and C/C composites brazed joint[J]. Transactions of the China Welding Institution, 2020, 41(4):1-5, 97(in Chinese). [20] WANG H, NING F D, HU Y B, et al. Edge trimming of carbon fiber-reinforced plastic composites using rotary ultrasonic machining:Effects of tool orientations[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(5-8):1641-1653. [21] JIA Y, LI K Z, XUE L Z, et al. Mechanical and electromagnetic shielding performance of carbon fiber reinforced multilayered (PyC-SiC)n matrix composites[J]. Carbon, 2017, 111:299-308. [22] LIU D, ZHAO K H, SONG Y Y, et al. Effect of introducing carbon fiber into AgCuTi filler on interfacial microstructure and mechanical property of C/C-TC4 brazed joints[J]. Materials Characterization, 2019, 157:109890. [23] CASTOLDI L, VISALLI G, MORIN S, et al. Copper-titanium thin film interaction[J]. Microelectronic Engineering, 2004, 76(1-4):153-159. [24] ELREFAEY A, TILLMANN W. Effect of brazing parameters on microstructure and mechanical properties of titanium joints[J]. Journal of Materials Processing Technology, 2009, 209(10):4842-4849. [25] GAMBARO S, VALENZA F, PASSERONE A, et al. Brazing transparent YAG to Ti6Al4V:Reactivity and characterization[J]. Journal of the European Ceramic Society, 2016, 36(16):4185-4196. [26] KOZLOVA O, BRACCINI M, VOYTOVYCH R, et al. Brazing copper to alumina using reactive CuAgTi alloys[J]. Acta Materialia, 2010, 58(4):1252-1260. [27] TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12):2817-2829. [28] LU L, FUH J Y H, CHEN Z D, et al. In situ formation of TiC composite using selective laser melting[J]. Materials Research Bulletin, 2000, 35(9):1555-1561. [29] LEE H K, LEE J Y. Decomposition and interfacial reaction in brazing of SiC by copper-based active alloys[J]. Journal of Materials Science Letters, 1992, 11(9):550-553. [30] LIN Q L, SHEN P, YANG L L, et al. Wetting of TiC by molten Al at 1123-1323 K[J]. Acta Materialia, 2011, 59(5):1898-1911. [31] DAHAN I, ADMON U, FRAGE N, et al. Diffusion in Ti/TiC multilayer coatings[J]. Thin Solid Films, 2000, 377-378:687-693. [32] FRAGE N, FROUMIN N, DARIEL M P. Wetting of TiC by non-reactive liquid metals[J]. Acta Materialia, 2002, 50(2):237-245. [33] 代翔宇. ZrO2陶瓷与Ti合金钎焊工艺及机理研究[D]. 哈尔滨:哈尔滨工业大学, 2017:36-41. DAI X Y. Research on brazing process and mechanism of ZrO2 ceramic to Ti alloys[D]. Harbin:Harbin Institute of Technology, 2017:36-41(in Chinese). [34] ZHANG S Y, YUAN Y, SU Y Y, et al. Interfacial microstructure and mechanical properties of brazing carbon/carbon composites to stainless steel using diamond particles reinforced Ag-Cu-Ti brazing alloy[J]. Journal of Alloys and Compounds, 2017, 719:108-115. [35] HE Y M, ZHANG J, PAN F, et al. Uncovering the critical factor in determining the residual stresses level in Si3N4-GM filler alloy-42CrMo joints by FEM analysis and experiments[J]. Ceramics International, 2013, 39(1):709-718. [36] 吴铭方, 于治水, 蒋成禹, 等. 反应层厚度对Al2O3/AgCuTi/Ti-6Al-4V接头强度的影响[J]. 稀有金属材料与工程, 2000, 29(6):419-422. WU M F, YU Z S, JIANG C Y, et al. Effect of reaction layer thickness on the strength of Al2O3/AgCuTi/Ti-6Al-4V joints[J]. Rare Metal Materials and Engineering, 2000, 29(6):419-422(in Chinese). [37] 吴昌忠,陈静,陈怀宁,等. 钎料对金属/陶瓷钎焊接头残余应力的影响[J]. 机械工程材料. 2005, 29(9):18-20. WU C Z, CHEN J, CHEN H N, et al. The influence of brazing metal on residual stresses in brazed joints of ceramic-metal[J]. Materials for Mechanical Engineering. 2005, 29(9):18-20(in Chinese). [38] SUN Z, ZHANG L X, HAO T D, et al. Brazing of SiO2f/SiO2 composite to Invar using a graphene-modified Cu-23Ti braze filler[J]. Ceramics International, 2018, 44(13):15809-15816. [39] ZHANG L X, SUN Z, CHANG Q, et al. Brazing SiO2f/SiO2 composite to Invar alloy using a novel TiO2 particle-modified composite braze filler[J]. Ceramics International, 2019, 45(2):1698-1709. [40] HOSSEINI M, MANESH H D. Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding[J]. Materials & Design, 2015, 81:122-132. [41] WANG Z Y, WANG G, LI M N, et al. Three-dimensional graphene-reinforced Cu foam interlayer for brazing C/C composites and Nb[J]. Carbon, 2017, 118:723-730. [42] JIN C K, WANG Y, YANG Z W, et al. C/C composite surface modified by electrophoretic depositing SiC nanowires and its brazing to Nb[J]. Ceramics International, 2020, 46(1):204-211. [43] BRAMFITT B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical Transactions, 1970, 1(7):1987-1995. [44] 董闯, 羌建兵, 袁亮, 等. 合金相的"团簇+连接原子"模型与成分设计[J]. 中国有色金属学报, 2011, 21(10):2502-2510. DONG C, QIANG J B, YUAN L, et al. A cluster-plus-glue-atom model for composition design of complex alloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10):2502-2510(in Chinese). [45] ZHANG L X, ZHANG B, SUN Z, et al. Preparation of the graphene nanosheets reinforced AgCuTi based composite for brazing graphite and Cu[J]. Journal of Alloys and Compounds, 2019, 782:981-985. [46] SONG Y Y, LIU D, HU S P, et al. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic[J]. Journal of the European Ceramic Society, 2019, 39(4):696-704. [47] STEFANESCU D M, JURETZKO F R, CATALINA A, et al. Particle engulfment and pushing by solidifying interfaces:Part Ⅱ. Microgravity experiments and theoretical analysis[J]. Metallurgical and Materials Transactions A, 1998, 29(6):1697-1706. [48] DEZELLUS O, ARROYAVE R, FRIES S G. Thermodynamic modelling of the Ag-Cu-Ti ternary system[J]. International Journal of Materials Research, 2011, 102(3):286-297. |