[1] BALLAND S, FERNANDEZ V V, STEELANT J. Thermal and energy management for hypersonic cruise vehicles-cycle analysis[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2015:3557. [2] DOMAN D B. Optimal cruise altitude for aircraft thermal management[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(11):2084-2095. [3] DOMAN D B. Rapid mission planning for aircraft thermal management[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2015:1076. [4] HASELBACH F, NEWBY A, PARKER R. Next generation of large civil aircraft engines-concepts & technologies[C]//European Conference on Turbomachinery Fluid dynamics and Thermodynamics (ETC), 2015. [5] SEKI N, MORIOKA N, SAITO H, et al. A Study of Air/Fuel Integrated Thermal Management System[R].Warrendale:SAE Technical Paper, 2015. [6] ESSER B, BARCENA J, KUHN M, et al. Innovative thermal management concepts and material solutions for future space vehicles[J]. Journal of Spacecraft and Rockets, 2016, 53(6):1051-1060. [7] ZILIO C, RIGHETTI G, MANCIN S, et al. Active and passive cooling technologies for thermal management of avionics in helicopters:Loop heat pipes and mini-vapor cycle system[J]. Thermal Science and Engineering Progress, 2018, 5:107-116. [8] DYSON R. NASA acoustic stirling IRAD energy conversion in aircraft[R]. Washington, D.C.:NASA Glenn Research Center, 2018. [9] TABASTE O, CAMPGUILHEM C. Thermal trade off sustained by multi disciplinary and multi level optimization[C]//VⅡ European Congress on Computational Methods in Applied Sciences and Engineering, 2016. [10] BARLOW B. Advanced design of infrared suppressor for turbo-shaft engines[C]//Proceedings of 33rd Annual National Forum of the American Helicopter Society. Washington, D.C.:American Helicopter Socienty, 1977. [11] BETTINI C, CRAVERO C, COGLIANDRO S. Multidisciplinary analysis of a complete infrared suppression system[C]//ASME Turbo Expo 2007:Power for Land, Sea, and Air. New York:ASME, 2007:1365-1370. [12] HU H, SAGA T, KOBAYASHI T, et al. A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique[J]. Physics of Fluids, 2001, 13(11):3425-3441. [13] MAO R, YU S, ZHOU T, et al. On the vorticity characteristics of lobe-forced mixer at different configurations[J]. Experiments in Fluids, 2009, 46(6):1049-1066. [14] NASTASE I, MESLEM A. Vortex dynamics and mass entrainment in turbulent lobed jets with and without lobe deflection angles[J]. Experiments in Fluids, 2010, 48(4):693-714. [15] LIU Y H. Experimental and numerical research on high pumping performance mechanism of lobed exhauster-ejector mixer[J]. International Communications in Heat and Mass Transfer, 2007, 34(2):197-209. [16] ZHANG J Z, SHAN Y, LI L G. Computation and validation of parameter effects on lobed mixer-ejector performances[J]. Chinese Journal of Aeronautics, 2005, 18(3):193-198. [17] SHENG Z Q, WU Z, HUANG P L. Chevron spoiler to improve the performance of lobed ejector/mixer[J]. International Communications in Heat and Mass Transfer, 2016, 77:174-182. [18] PASZKO M. Infrared signature suppression systems in modern military helicopters[J]. Prace Instytutu Lotnictwa, 2017, 248(3):63-83. [19] 王先炜, 孙中海, 匡传树. RAH-66直升机红外抑制器剖析[J]. 直升机技术, 2008(2):23-28. WANG X W, SUN Z H, KUANG C S. The Anatomy of RAH-66 Helicopter Infrared Suppressor[J]. Helicopter Technique, 2008(2):23-28(in Chinese). [20] 彭孝天, 王苏明, 王晨臣, 等. 直升机环境控制系统应用现状分析[J]. 海军航空工程学院学报, 2018, 33(2):225-230. PENG X T, WANG S M, WANG C C, et al. Analysis of application status of helicopter environmental control system[J]. Journal of Naval Aeronautical & Astronautical University, 2018, 33(2):225-230(in Chinese). [21] LI Y Q, XUAN Y M. Integrated thermal modeling of helicopters[J]. Applied Thermal Engineering, 2019, 154:458-468. [22] CAMPOREALE S, FORTUNATO B, MASTROVITO M. A modular code for real time dynamic simulation of gas turbines in simulink[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3):506-517. [23] 王适存. 直升机空气动力学[M]. 北京:航空专业教材编审组, 1985. WANG S C. Aerodynamics of the helicopter[M]. Beijing:Aviation Professional Teaching Materials Editing Group, 1985(in Chinese). [24] 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京:北京航空航天大学出版社, 2004. SHOU R Z, HE H S. Environmental control of aircraft[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2004(in Chinese). [25] 宣益民, 韩玉阁. 地面目标与背景的红外特征[M]. 北京:国防工业出版社, 2004. XUAN Y M, HAN Y G. Infrared characterizations of ground targets and backgrounds[M]. Beijing:National Defence Industry Press, 2004(in Chinese). [26] 杨世铭, 陶文铨. 传热学(第四版)[M]. 北京:高等教育出版社, 2006. YANG S M, TAO W Q. Heat transfer (4th edition)[M]. Beijing:Higher Education Press, 2006(in Chinese). [27] LIENHARD J H. A heat transfer textbook[M]. Cambridge:Phlogiston Press, 2012. [28] LANGLEY N, DARYABEIGI K. Heat transfer in adhesively bonded honeycomb core panels[J]. Journal of Thermophysics and Heat Transfer, 2001, 16(2):217-221. [29] SWANN R T, PITTMAN C M. Analysis of effective thermal conductivities of honeycomb core and corrugated core sandwich panels:NASA-TN-D-714[R]. Washington,D.C.:NASA, 1961. [30] DUFFIE J A, BECKMAN W A. Solar engineering of thermal processes[M]. Hoboken:Wiley-Interscience, 2006. [31] 罗明东, 吉洪湖, 黄伟. 非加力涡轮发动机排气系统红外辐射强度的数值计算[J]. 航空动力学报, 2007, 22(10):1609-1616. LUO M D, JI H H, HUANG W. Numerical evaluation on infrared radiant intensity of exhaust system of turbine engine without afterburning[J]. Journal of Aerospace Power, 2007, 22(10):1609-1616(in Chinese). [32] LI Y Q, XUAN Y M. Thermal characteristics of helicopters based on integrated fuselage structure/engine model[J]. International Journal of Heat and Mass Transfer, 2017, 115:102-114. [33] CENNERILLI S, SCIUBBA E. Application of the CAMEL process simulator to the dynamic simulation of gas turbines[J]. Energy Conversion and Management, 2007, 48(11):2792-2801. |