[1] HENDRICKS R C, SCHLUMBERGER S, BRAUN M J, et al. A bulk flow model of a brush seal system[C]//Proceedings of ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, 2015. [2] OWEN A K, JONES T V, GUO S M, et al. An experimental and theoretical study of brush seal and shaft thermal interaction[C]//Proceedings of ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference, 2009:977-984. [3] DOGU Y, AKSIT M F. Brush seal temperature distribution analysis[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3):599-609. [4] DOGU Y, AKSIT M F. Effects of geometry on brush seal pressure and flow fields-part I:front plate configurations[J]. Journal of Turbomachinery, 2006, 128(2):367-378. [5] DOGU Y, AKSIT M F. Effects of geometry on brush seal pressure and flow fields-part II:backing plate configurations[J]. Journal of Turbomachinery, 2006, 128(2):379-389. [6] DOGU Y. Investigation of brush seal flow characteristics using bulk porous medium approach[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(1):136-144. [7] MODI V. Modeling bristle lift-off in idealized brush seal configurations[C]//Seals Flow Code Development Workshop, The 1992 Seals Flow Code Development Workshop, 1993. [8] 陈春新, 李军, 丰镇平. 刷式密封刷丝束与转子接触力的数值研究[J]. 西安交通大学学报, 2010, 44(7):23-27. CHEN C X, LI J, FENG Z P. Numerical investigation into bristle-rotor contact force of brush seals[J]. Journal of Xi'an Jiaotong University, 2010, 44(7):23-27(in Chinese). [9] 马登骞, 张元桥, 李军, 等. 考虑刷丝变形的后夹板结构对刷式密封泄漏和传热特性影响的研究[J]. 西安交通大学学报, 2019, 53(9):15-25. MA D Q, ZHANG Y Q, LI J, et al. Effects of backing plate structure on leakage and heat transfer characteristics of brush seals considering bristle pack deformation[J]. Journal of Xi'an Jiaotong University, 2019, 53(9):15-25(in Chinese). [10] 刘璐园, 张元桥, 李军. 基于流固耦合方法的刷式密封刷丝变形及接触力特性的数值研究[J]. 燃气轮机技术, 2019, 32(1):1-7. LIU L Y, ZHANG Y Q, LI J. Numerical investigations on the bristle deformation and contact force characteristics of brush seals using fluid-structure coupling method[J]. Gas Turbine Technology, 2019, 32(1):1-7(in Chinese). [11] 孙丹, 刘宁宁, 胡广阳, 等. 考虑刷丝变形的刷式密封流场特性与力学特性流固耦合研究[J]. 航空动力学报, 2016, 31(10):2544-2553. SUN D, LIU N N, HU G Y, et al. Fluid-structure interaction investigation on the flow field and mechanical characteristic in brush seals with bristle deflections[J]. Journal of Aerospace Power, 2016, 31(10):2544-2553(in Chinese). [12] 孙丹, 杜宸宇, 刘永泉, 等. 基于ALE流固耦合方法的刷式密封刷丝接触变形特性理论与试验研究[J]. 机械工程学报, 2020, 56(9):170-180. SUN D, DU C Y, LIU Y Q, et al. Theoretical and experimental investigation on the bristle contact deflections characteristics of brush seals based on ALE fluid-structure interaction method[J]. Journal of Mechanical Engineering, 2020, 56(9):170-180(in Chinese). [13] HILDEBRANDT M, SCHWITZKE C, BAUER H J. Experimental investigation on the influence of geometrical parameters on the frictional heat input and leakage performance of brush seals[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(4):042504. [14] HUANG S Q, SUO S F, LI Y J, et al. Theoretical and experimental investigation on tip forces and temperature distributions of the brush seal coupled aerodynamic force[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(5):052502. [15] PEKRIS M J, FRANCESCHINI G, GILLESPIE D R H. An investigation of flow, mechanical, and thermal performance of conventional and pressure-balanced brush seals[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(6):062502. [16] DEMIROGLU M, TICHY J A. An investigation of heat generation characteristics of brush seals[C]//Proceedings of ASME Turbo Expo 2007:Power for Land, Sea, and Air. 2009:1261-1270. [17] RABEN M, FRIEDRICHS J, HELMIS T, et al. Brush seals used in steam environments-chronological wear development and the impact of different seal designs[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(5):051901. [18] 吴施志, 江平, 力宁, 等. 刷式密封摩擦生热温度场数值计算及试验[J]. 航空动力学报, 2019, 34(4):737-743. WU S Z, JIANG P, LI N, et al. Numerical calculation and experiment on temperature field of friction heat generation of brush seal[J]. Journal of Aerospace Power, 2019, 34(4):737-743(in Chinese). [19] 魏兆栋, 高仁璟, 王长生. 基于热固耦合问题的多尺度拓扑优化设计[J]. 计算力学学报, 2021, 38(2):133-139. WEI Z D, GAO R J, WANG C S. Multi-scale topology optimization design based on thermo-mechanical coupling problem[J]. Chinese Journal of Computational Mechanics, 2021, 38(2):133-139(in Chinese). [20] 孟繁超, 董素君, 江泓升, 等. 长时间流固耦合传热过程的快速算法[J]. 北京航空航天大学学报, 2017, 43(6):1224-1230. MENG F C, DONG S J, JIANG H S, et al. A fast algorithm for long-term fluid-solid conjugate heat transfer process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6):1224-1230(in Chinese). [21] BERGMAN T L, LAVINE A S, INCROPERA F P, et al. Introduction to Heat Transfer[M]. Hoboken:John Wiley & Sons, 2011. [22] 苗恩铭, 费业泰, 赵静. 温度、热量与热变形的关系及计算方法研究[J]. 工具技术, 2003, 37(7):19-21. MIAO E M, FEI Y T, ZHAO J. Research on relationship between temperature, heat and thermal deformation and calculating method[J]. Tool Engineering, 2003, 37(7):19-21(in Chinese). [23] 黄智斌, 朱冬梅, 罗发, 等. K424合金的高温氧化行为和红外发射率研究[J]. 稀有金属材料与工程, 2008, 37(8):1411-1414. HUANG Z B, ZHU D M, LUO F, et al. High temperature oxidation behavior and infrared character of a Ni-base superalloy K424[J]. Rare Metal Materials and Engineering, 2008, 37(8):1411-1414(in Chinese). |