[1] MONGIA H C. Engineering aspects of complex gas turbine combustion mixers part IV:Swirl cup:AIAA-2011-5526[R]. Reston:AIAA, 2011. [2] 彭云晖,林宇震,许全宏,等. 双旋流空气雾化喷嘴喷雾、流动和燃烧性能[J]. 航空学报,2008,29(1):1-14. PENG Y H,LIN Y Z,XU Q H,et al. Atomization,aerodynamics and combustion performance of swirl cup[J]. Acta Aeronautica et Astronautica Sinica,2008,29(1):1-14(in Chinese). [3] 赵自强,何小民,丁国玉,等. 旋流器流量分配对三级旋流流场特性的影响[J]. 推进技术,2017,38(1):134-140. ZHAO Z Q,HE X M,DING G Y,et al. Effects of air proportions on flow characteristics of swirling flow generated by triple-swirlers[J]. Journal of Propulsion Technology,2017,38(1):134-140(in Chinese). [4] 赵自强,何小民,丁国玉,等. 外旋流器旋流数对三级旋流流场特性的影响[J]. 航空动力学报,2017,32(2):306-313. ZHAO Z Q,HE X M,DING G Y,et al. Effects of outer swirl number on flow characteristics of triple-swirlers[J]. Journal of Aerospace Power,2017,32(2):306-313(in Chinese). [5] 蒋波,赵自强,何小民,等. 内旋流器旋流数对三级旋流流场特性的影响[J]. 推进技术,2016,37(11):2150-2156. JIANG B,ZHAO Z Q,HE X M,et al. Effects of inner swirl number on flow characteristics of triple-swirlers[J]. Journal of Propulsion Technology,2016,37(11):2150-2156(in Chinese). [6] 王成军,江平,辛欣,等. 基于PIV技术对三级旋流杯燃烧室流场的测量[J]. 航空动力学报,2015,30(5):1032-1039. WANG C J,JIANG P,XIN X,et al. Measurement of triple-stage swirler cup combustor flow field based on PIV technology[J]. Journal of Aerospace Power,2015,30(5):1032-1039(in Chinese). [7] 王成军,张中飞,陈保东,等. 三级旋流杯燃烧室流场测量与数值模拟[J]. 热科学与技术,2017,16(5):357-362. WANG C J,ZHANG Z F,CHEN B D,et al. PIV measurement and numerical simulation of flow field in triple-stage swirler cup combustor[J]. Journal of Thermal Science and Technology,2017,16(5):357-362(in Chinese). [8] 丁国玉,何小民,赵自强,等. 无掺混孔三级旋流器燃烧室燃烧性能试验[J]. 航空动力学报,2014,29(12):2868-2873. DING G Y,HE X M,ZHAO Z Q,et al. Experiment of combustion performance of a triple swirler combustor with no dilution holes[J]. Journal of Aerospace Power,2014,29(12):2868-2873(in Chinese). [9] 丁国玉,何小民,赵自强,等. 油气比及进口参数对三级旋流器燃烧室性能的影响[J]. 航空动力学报,2015,30(1):53-58. DING G Y,HE X M,ZHAO Z Q,et al. Effect of fuel-air ratio and inlet parameters on performance of triple swirler combustor[J]. Journal of Aerospace Power,2015,30(1):53-58(in Chinese). [10] 丁国玉,何小民,赵自强,等. 三级轴向旋流器影响燃烧室性能的试验[J]. 航空动力学报,2015,30(3):686-693. DING G Y,HE X M,ZHAO Z Q,et al. Experiment on effect of triple axial swirler on combustor performance[J]. Journal of Aerospace Power,2015,30(3):686-693(in Chinese). [11] 刘爱虢,朱悦,陈保东,等. 三级旋流器旋流角匹配影响双环预混旋流燃烧室燃烧性能试验[J]. 推进技术,2017,38(7):1539-1547. LIU A G,ZHU Y,CHEN B D,et al. Experiment on effects of triple swirler swirl angle matching on combustion performance of twins annular premixing swirler combustor[J]. Journal of Propulsion Technology,2017,38(7):1539-1547(in Chinese). [12] 袁怡祥,林宇震,刘高恩. 三旋流器头部燃烧室拓宽燃烧稳定工作范围的研究[J]. 航空动力学报,2004,19(1):142-147. YUAN Y X,LIN Y Z,LIU G E. Combustor dome design with three swirlers for widening the operation stability range[J]. Journal of Aerospace Power,2004,19(1):142-147(in Chinese). [13] 丁国玉,安伯堃,何小民,等. 三级轴向旋流器燃烧室的贫油熄火性能试验[J]. 航空动力学报,2015,30(2):356-361. DING G Y,AN B K,HE X M,et al. Experiment on lean blowout performance of triple axial swirler combustor[J]. Journal of Aerospace Power,2015,30(2):356-361(in Chinese). [14] 张楷雨,杨金虎,刘富强,等. 多级旋流燃烧室贫油熄火特性的实验研究和数值分析[J]. 燃气轮机技术,2015,28(4):35-41. ZHANG K Y,YANG J H,LIU F Q,et al. Numerical analysis and experimental investigation of lean blowout performance in a multi-swirled gas turbine combustor[J]. Gas Turbine Technology,2015,28(4):35-41(in Chinese). [15] 丁国玉,何小民,薛冲,等. 头部及掺混孔对三级旋流器燃烧室出口温度分布影响的试验[J]. 航空动力学报,2015,30(4):807-813. DING G Y,HE X M,XUE C,et al. Experiment on effect of dome and dilution holes on outlet temperature distribution for triple swirler combustor[J]. Journal of Aerospace Power,2015,30(4):807-813(in Chinese). [16] 彭云晖,林宇震,刘高恩. 三旋流器燃烧室出口温度分布的初步试验研究[J]. 航空动力学报,2007,30(4):554-558. PENG Y H,LIN Y Z,LIU G E. A preliminary experimental study of pattern factor for a triple swirler combustor[J]. Journal of Aerospace Power,2007,30(4):554-558(in Chinese). [17] WANG H Y,MCDONELL V G,SAMUELSEN G S. Influence of hardware design on the flow field structures and the patterns of droplet dispersion[J]. Journal of Engineering for Gas Turbines and Power,1995,117(2):282-289. [18] VASHAHI F, REZAEI S, DAFSARI RA, et al. Sensitivity analysis of the vane length and passage width for a radial type swirler employed in a triple swirler configuration[J]. Theoretical & Applied Mechanics Letters,2019,9(6):363-375. [19] VALERA-MEDINA A,SYRED N,BOWEN P. Central recirculation zone visualization in confined swirl combustors for terrestrial energy[J]. Journal of Propulsion & Power,2013,29(1):195-204. [20] 汤姣. 双级径向叶片式涡流器优化设计及试验研究[D]. 上海:上海交通大学,2017. TANG J. Optimize design and experimental study the dual-stage radial vanes swirler[D]. Shanghai:Shanghai Jiao Tong University,2017(in Chinese). [21] 王志凯,陈盛,刘冉,等.双级轴向旋流杯气量比对雾化性能影响的试验[J].航空动力学报,2019,34(12):2656-2662. WANG Z K,CHEN S,LIU R,et al. Experiment on effects of airflow ratio on spray characteristics of dual-axial swirl cup[J]. Journal of Aerospace Power,2019,34(12):2656-2662(in Chinese). [22] RODRIGUEZ-MARTINEZ V,DAWSON J R,SYRED N,et al. The effect of expansion plane geometry on fluid dynamics under combustion instability in a swirl combustor:AIAA-2003-0116[R]. Reston:AIAA, 2003. [23] SONG H,HAN X,LIN Y,et al. The Effect of the corner recirculation zone on separated stratified swirling flames and combustion instabilities:GT2019-90436[R]. New York:ASME, 2019. [24] KAO Y H,TAMBE S B,JENG S M. Effect of dome geometry on swirling flow field characteristics of a counter-rotating radial-radial swirler:GT2013-95344[R]. New York:ASME, 2013. [25] KAO Y H,TAMBE S B,JENG S M. Aerodynamics study of a linearly-arranged 5-swirler array:GT2014-25094[R]. New York:ASME, 2014. [26] 刘泽宇,张弛,韩啸,等. 分层比对分开分层旋流预混火焰结构的影响[J].航空学报,2018,39(3):121692. LIU Z Y,ZHANG C,HAN X,et al. Effects of stratification ratio on structure of separated stratified premixed swirl flame[J]. Acta Aeronautica et Astronautica Sinica,2018,39(3):121692(in Chinese). [27] SHANBHOGUE S J, SANUSI Y S,TAAMALLAH S,et al. Flame macrostructures,combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion[J]. Combustion and Flame, 2016,163:494-507. [28] TAO M Y, ZHAO P, VANDERWEGE B,et al. Further study on wall film effects and flame quenching under engine thermodynamic conditions[J]. Combustion and Flame,2020,216:100-110. [29] 王俊懿,葛宏达,赵晓敏,等. 当量比对旋流燃烧室火焰形态与流场影响的激光诊断[J]. 实验流体力学,2019,33(4):21-26. WANG J Y,GE H D,ZHAO X M,et al. Measurement and diagnosis of the influence of equivalent ratio on the flame shape and flow field of a swirling combustor[J]. Journal of Experiments in Fluid Mechanics,2019,33(4):21-26(in Chinese). [30] THIBAULT F G,DANIEL D,LAURENT Z,et al. Analysis of topology transitions of swirl flames interacting with the combustor side wall[J]. Combustion and Flame,2015,162:4342-4357. [31] ECKEL G,GROHMANN J,CANTU L,et al. LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry[J]. Combustion and Flame,2019,207:134-152. |