[1] 寇英信, 李战武, 陈哨东, 等. 火控系统在航空作战中的作用——作战飞机之"魂"[J]. 电光与控制, 2013, 20(12):1-5. KOU Y X, LI Z W, CHEN S D, et al. The important role of fire control system in air combat——Soul of fighters[J]. Electronics Optics & Control, 2013, 20(12):1-5(in Chinese). [2] 姜佰辰, 关键, 周伟, 等. 基于多项式卡尔曼滤波的船舶轨迹预测算法[J]. 信号处理, 2019, 35(5):741-746. JIANG B C, GUAN J, ZHOU W, et al. Vessel trajectory prediction algorithm based on polynomial fitting Kalman filtering[J]. Journal of Signal Processing, 2019, 35(5):741-746(in Chinese). [3] 赵帅兵, 唐诚, 梁山, 等. 基于改进卡尔曼滤波的控制河段船舶航迹预测[J]. 计算机应用, 2012, 32(11):3247-3250. ZHAO S B, TANG C, LIANG S, et al. Track prediction of vessel in controlled waterway based on improved Kalman filter[J]. Journal of Computer Applications, 2012, 32(11):3247-3250(in Chinese). [4] 乔少杰, 韩楠, 朱新文, 等. 基于卡尔曼滤波的动态轨迹预测算法[J]. 电子学报, 2018, 46(2):418-423. QIAO S J, HAN N, ZHU X W, et al. A dynamic trajectory prediction algorithm based on Kalman filter[J]. Acta Electronica Sinica, 2018, 46(2):418-423(in Chinese). [5] 翟岱亮, 雷虎民, 李炯, 等. 基于自适应IMM的高超声速飞行器轨迹预测[J]. 航空学报, 2016, 37(11):3466-3475. ZHAI D L, LEI H M, LI J, et al. Trajectory prediction of hypersonic vehicle based on adaptive IMM[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3466-3475(in Chinese). [6] 杨彬, 贺正洪. 一种GRNN神经网络的高超声速飞行器轨迹预测方法[J]. 计算机应用与软件, 2015, 32(7):239-243. YANG B, HE Z H. Hypersonic vehicle track prediction based on GRNN[J]. Computer Applications and Software, 2015, 32(7):239-243(in Chinese). [7] 谭伟, 陆百川, 黄美灵. 神经网络结合遗传算法用于航迹预测[J]. 重庆交通大学学报, 2010, 291(1):147-150. TAN W, LU B C, HUANG M L. Track prediction based on neural networks and genetic algorithm[J]. Journal of Chongqing Jiaotong University, 2010, 291(1):147-150(in Chinese). [8] 甘旭升, 端木京顺, 孟月波, 等. 基于粒子群优化的WNN飞行数据气动力建模[J]. 航空学报, 2012, 33(7):1209-1217. GAN X S, DUANMU J S, MENG Y B, et al. Aerodynamic modeling from flight data based on WNN optimized by particle swarm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1209-1217(in Chinese). [9] SLATTERY R, ZHAO Y. Trajectory synthesis for air traffic automation[J]. Journal of Guidance, Control and Dynamic, 1997, 20:232-238. [10] 张雪清, 梁军. 风电功率时间序列混沌特性分析及预测模型研究[J]. 物理学报, 2012, 61(19):70-81. ZHANG X Q, LIANG J. Chaotic characteristics analysis and prediction model study on wind power time series[J]. Acta Physica Sinica, 2012, 61(19):70-81(in Chinese) [11] CHATTERJEE A. Parameter estimation of Duffing oscillator using Volterra series and multi-tone excitation[J]. Neural Networks, 2009, 22(1):343-347. [12] 张家良, 曹建福, 高峰. 大型装备传动系统非线性频谱特征提取与故障诊断[J]. 控制与决策, 2012, 27(1):135-138. ZHANG J L, CAO J F, GAO F. Feature extraction and fault diagnosis of large-scale equipment transmission system based on nonlinear frequency spectrum[J]. Control and Decision, 2012, 27(1):135-138(in Chinese). [13] 孔祥玉, 韩崇昭, 马红光, 等. 一种总体最小二乘算法及在Volterra滤波器中的应用[J]. 西安交通大学学报, 2004, 38(4):339-342. KONG X Y, HAN C Z, MA H G, et al. Total least square algorithm and its application to Volterra filter[J]. Journal of Xi'an Jiao Tong University, 2004, 38(4):339-342. [14] 唐浩, 屈梁生, 温广瑞. 基于Volterra级数的转子故障诊断研究[J]. 中国机械工程, 2009, 20(4):447-454. TANG H, QU L S, WEN G R. Fault diagnosis for rotor system based on volterra series[J]. China Mechanical Engineering, 2009, 20(4):447-454(in Chinese). [15] ABBAS H M, BAYOUMI M M. Volterra system identification using adaptive genetic algorithms[J]. Applied Soft Computing, 2004(5):75-86 [16] 李志农, 唐高松, 肖尧先, 等. 基于自适应蚁群优化的Volterra核辨识算法研究[J]. 振动与冲击, 2011, 30(10):35-38. LI Z N, TANG G S, XIAO Y X, et al. Volterra series identification method based on adaptive ant colony optimizations[J]. Journal of Vibration and Hock, 2011, 30(10):35-38(in Chinese). [17] 李志农, 蒋静, 陈金刚, 等. 基于量子粒子群优化的Volterra核辨识算法研究[J]. 振动与冲击, 2013, 32(3):60-63. LI Z N, JIANG J, CHEN J G, et al. Volterra series identification method based on quantum particle swarm optimization[J]. Journal of Vibration and Hock, 2013, 32(3):60-63(in Chinese). [18] 李志农, 蒋静, 冯辅周, 等. 基于量子粒子群优化Volterra时域核辨识的隐Markov模型识别方法[J]. 仪器仪表学报, 2011, 32(12):2693-2698. LI Z N, JIANG J, FENG F Z, et al. Hidden Markov model recognition method based on Volterra kernel identified with particle swarm optimization[J]. Chinese Journal of Scientific Instrument, 2011, 32(12):2693-2698(in Chinese). [19] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Piscataway:IEEE Press, 1995:39-43. [20] KENNEDY J, EBERHART R. Particle swarm optimization[C]//International Conference on Neural Networks. Piscataway:IEEE Press, 1995:1942-1948. [21] 毛鹏轩, 肖扬. 粒子群算法在稳定时滞系统设计中的应用[J]. 计算机应用研究, 2012, 29(1):214-216. MAO P X, XIAO Y. Application of PSO algorithm for stable time-delay system design[J]. Application Research of Computers, 2012, 29(1):214-216(in Chinese). [22] 崔志华, 曾建潮. 微粒群优化算法[M]. 北京:科学出版社, 2011:85-86. CUI Z H, ZENG J C. Particle swarm optimization[M]. Beijing:Science Press, 2011:85-86(in Chinese). [23] 商云龙, 张奇, 崔纳新, 等. 基于AIC准则的锂离子电池变阶RC等效电路模型研究[J]. 电工技术学报, 2015, 30(17):55-62. SHANG Y L, ZHANG Q, CUI N X, et al. Research on variable-order RC equivalent circuit model for lithium-ion battery based on the AIC criterion[J]. Transactions of China Electrotechnical Society, 2015, 30(17):55-62(in Chinese). [24] SAVI M A, PEREIRA-PINTO F H I, VIOLA F M, et al. Using 0-1 test to diagnose chaos on shape memory alloy dynamical systems[J]. Chaos Solitons & Fractals, 2017, 103:307-324 [25] ARMAND E F J S, BODO B, SABAT S L, et al. A modified 0-1 test for chaos detection in oversampled time series observations[J]. International Journal of Bifurcation and Chaos, 2014, 24(5):1450063. [26] TAKENS F. Determing strang attractors in turbulence[J]. Lecture Notes in Math, 1981, 898:361-381. [27] SONG J, MENG D, WANG Y. Analysis of chaotic behavior based on phase space reconstruction methods[C]//Proceedings of the IEEE 6th International Symposium on Computational Intelligence and Design. Piscataway:IEEE Press, 2014:414-417 [28] 陆振波, 蔡志明, 姜可宇. 基于改进的C-C方法的相空间重构参数选择[J]. 系统仿真学报, 2007, 19(11):2527-2529. LU Z B, CAI Z M, JIANG K Y. Determination of embedding parameters for phase space reconstruction based on improved C-C methods[J]. Journal of System Simulation, 2007, 19(11):2527-2529(in Chinese). [29] CUI Z H, CAI X J, ZENG J C, et al. Particle swarm optimization with FUSS and RWS for high dimensional functions[J]. Applied Mathematics and Computation, 2008, 205(1):98-108. [30] HARISH G. A hybrid PSO-GA algorithm for constrained optimization problems[J]. Applied Mathematics and Computation, 2016, 274:292-395. [31] 张浩, 张铁男, 沈继红, 等. Tent混沌粒子群算法及其在结构优化决策中的应用[J]. 控制与决策, 2008, 23(8):857-862. ZHANG H, ZHANG T N, SHEN J H, et al. Research on decision-makings of structure optimization based on improved Tent PSO[J]. Control and Decision, 2008, 23(8):857-862(in Chinese). [32] 魏玉琴, 戴永寿, 张亚南, 等. 基于Tent映射的自适应混沌嵌人式粒子群算法[J]. 计算机工程与应用, 2013, 49(10):45-49. WEI Y Q, DAI Y S, ZHANG Y N, et al. Adaptive chaotic embedded particle swarm optimization algorithm based on Tent mapping[J]. Computer Engineering and Applications, 2013, 49(10):45-49(in Chinese). [33] NOMAN S, SHAMSUDDIN S, HASSANIEN A. Hybrid learning enhancement of RBF network with particle swarm optimization[J]. Foundations of Computational, Intelligence, 2009, 1:381-397. [34] 甘慧萍. 基于IGA的Volterra核辨识及机械振动信号消噪方法研究[D]. 兰州:兰州交通大学, 2015. GAN H P. Research of Volterra kernel identification method based on IGA and its application in cancellation of mechanical vibration signal noise[D]. Lanzhou:Lanzhou Jiaotong University, 2015(in Chinese). [35] 唐高松. 基于Volterra级数模型辨识的旋转机械故障诊断方法研究[D]. 郑州:郑州大学, 2010. TANG G S. Rotating machine fault diagnosis method based on Volterra series identification[D]. Zhengzhou:Zhengzhou University, 2010(in Chinese). |