[1] Verboven P, Cauberghe B, Guillaume P, et al. Modal parameter estimation and monitoring for on-line flight flutter analysis[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 587-610.
[2] Wilson H. Dynamics of variable mass flexible bodies with time varying mode shapes[D]. Huntsville: University of Alabama in Huntsville, 2007.
[3] Fujii H A, Watanabe T, Kojima H, et al. Control of attitude and vibration of a tethered space solar power satellite[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2003.
[4] Thornton E A, Dechaumphai P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1992, 25(11): 1052-1059.
[5] Poulimenos A G, Fassois S D. Parametric time-domain methods for non-stationary random vibration modelling and analysis—a critical survey and comparison[J]. Mechanical Systems and Signal Processing, 2006, 20(4): 763-816.
[6] Niedzwiecki M. Identification of time-varying processes[M]. New York: Wiley, 2000: 103-178.
[7] Kitagawa G, Gersch W. Smoothness priors analysis of time series[M]. Berlin: Springer, 1996: 27-88.
[8] Spiridonakos M D, Fassois S D. Parametric identification of a time-varying structure based on vector vibration response measurements[J]. Mechanical Systems and Signal Processing, 2009, 23(6): 2029-2048.
[9] Xu X Z, Zhang Z Y, Hua H X. Identification of time-variant modal parameters by a time-varying parametric approach[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 230-233.
[10] Spiridonakos M D, Fassois S D. Output-only identification of time-varying structures via a complete FS-TARMA model approach[C]//IOMAC2011, International Operational Modal Analysis Conference, 2011.
[11] Spiridonakos M D, Fassois S D. Adaptable functional series tarma models for non-stationary signal modelling[C]//Proceeding of Preprints of the 16th IFAC Symposium on System Identification. Brussels: IFAC Technical Cornmittee, 2012: 1276-1281.
[12] Spiridonakos M D, Fassois S D. Adaptable functional series models for non-stationary signal representation and their application to mechanical random vibration modeling[J]. Signal Processing, 2014, 96: 63-79.
[13] Huang C S, Hung S L, Su W C. Identification of time-variant modal parameters using time-varying autoregressive with exogenous input and low-order polynomial function[J]. Computer-Aided Civil and Infrastructure Engineering, 2009, 24(7): 470-491.
[14] Su W C, Liu C Y, Huang C S. Identification of instantaneous modal parameter of time-varying systems via a wavelet-based approach and its application[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(4): 279-298.
[15] Liu G R. Mesh free methods: moving beyond the finite element method[M]. New York: CRC Press, 2003: 84-162.
[16] Simpson T W, Mauery T M, Korte J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39(12): 2233-2241.
[17] Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments[J]. Statistics Science, 1989, 4(4): 409-435.
[18] Reinsel G. Elements of multivariate time series analysis[M]. Berlin: Springer, 1993: 21-51. |