[1] YANG H, LI H, ZHANG Z Y, et al. Advances and trends on tube bending forming technologies[J]. Chinese Journal of Aeronautics, 2012, 25(1): 1-12.
[2] SONG F F, YANG H, LI H, et al. Springback prediction of thick-walled high-strength titanium tube bending[J]. Chinese Journal of Aeronautics, 2013, 26(5): 1336-1345.
[3] JIANG Z Q, ZHAN M, YANG H, et al. Deformation behavior of medium strength TA18 high-pressure tubes during NC bending with different bending radii[J]. Chinese Journal of Aeronautics, 2011, 24(5): 57-64.
[4] TIAN S, LIU Y L, YANG H. Effects of geometrical parameters on wrinkling of thin-walled rectangular aluminum alloy wave-guide tubes in rotary-draw bending[J]. Chinese Journal of Aeronautics, 2013, 26(1): 242-248.
[5] YAN J, YANG H, ZHAN M, et al. Forming characteristics of Al-alloy large-diameter thin-walled tubes in NC-bending under axial compressive loads[J]. Chinese Journal of Aeronautics, 2010, 23(4): 461-469.
[6] ZENG Y S, LI Z Q. Experimental research on the tube push-bending process[J]. Journal of Materials Processing Technology, 2002, 122(2-3): 237-240.
[7] ZHANG Z Y, YANG H, LI H, et al. Quasi-static tensile behavior and constitutive modeling of large diameter thin-walled commercial pure titanium tube[J]. Materials Science & Engineering A, 2013, 569: 96-105.
[8] TAO Z J, YANG H, LI H, et al. Quasi-static tensile behavior of large-diameter thin-walled Ti-6Al-4V tubes at elevated temperature[J]. Chinese Journal of Aeronautics, 2016, 29(2): 542-553.
[9] ZHAN M, HUANG T, YANG H. Variation of contractile strain ratio of Ti-3Al-2.5V tubes and its effects in tubes numerical control bending process[J]. Journal of Materials Processing Technology, 2015, 217: 165-183.
[10] CARBONNIERE J, THUILLIER S, SABOURIN F, et al. Comparison of the work hardening of metallic sheets in bending-unbending and simple shear[J]. International Journal of Mechanical Sciences, 2009, 51(2): 122-130.
[11] AN Y G, VEGTER H, HEIJNE J. Development of simple shear test for the measurement of work hardening[J]. Journal of Materials Processing Technology, 2009, 209(9): 4248-4254.
[12] CAO J, LEE W, CHENG H S, et al. Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals[J]. International Journal of Plasticity, 2009, 25(5): 942-972.
[13] YIN Q, SOYARSLAN C, GUNER A, et al. A cyclic twin bridge shear test for the identification of kinematic hardening parameters[J]. International Journal of Mechanical Sciences, 2012, 59(1): 31-43.
[14] YIN Q, ZILLMANN B, SUTTTNER S, et al. An experimental and numerical investigation of different shear test configurations for sheet metal characterization[J]. International Journal of Solids and Structures, 2014, 51(5): 1066-1074.
[15] MERKLEIN M, BIASUTTI M. Forward and reverse simple shear test experiments for material modeling in forming simulations[C]//International Conference on Technology of Plasticity. Aachen: Steel Research International, 2011: 702-707.
[16] G'SELL C, BONI S, SHRIVASTAVA S. Application of the plane simple shear test for determination of the plastic behaviour of solid polymers at large strains[J]. Journal Materials Science, 1983, 18(3): 903-918.
[17] MIYAUCHI K. A proposal of a planar simple shear test in sheet metals[J]. Science Paper for Institute of Physical Chemistry Research, 1984, 78(3): 27-40.
[18] ASTM International. ASTM B831-05 Standard test method for shear testing of thin aluminum alloy products[S]. New York: ASTM, 2005: 1-4.
[19] FRESNEL H, GROLLEAU V, LONGE'RE P, et al. Characterization of the shear behaviour of a thin-walled tubular material[J]. Thin-Walled Structures, 2009, 47(3): 295-303.
[20] ASPENBERG D, LARSSON R, NILSSON L. An evaluation of the statistics of steel material model parameters[J]. Journal of Materials Processing Technology, 2012, 212(6): 1288-1297.
[21] 孙志超, 杨合, 蔡旺, 等. 一种确定管材塑性本构关系的反算法[J]. 重型机械, 2000(3): 43-46. SUN Z C, YANG H, CAI W, et al. A reversion calculation method for determining the constitutive stress strain relationship of tubes[J]. Heavy Machinery, 2000(3): 43-46 (in Chinese).
[22] HARTH T, SCHWAN S, LEHN J, et al. Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments[J]. International Journal of Plasticity, 2004, 20(8-9): 1403-1440.
[23] 闫晶, 杨合, 詹梅, 等. 一种确定管材本构参数的新方法及其应用[J]. 材料科学与工艺, 2009, 17(3): 297-300. YAN J, YANG H, ZHAN M, et al. A new method to determine plastic constitutive parameters of tube and its applications[J]. Materials Science & Technology, 2009, 17(3): 297-300 (in Chinese).
[24] WEI D L, ZHEN Z S, CHEN J. Optimization and tolerance prediction of sheet metal forming process using response surface model[J]. Computational Materials Science, 2009, 42(2): 228-233.
[25] WANG H, LI G Y, ZHONG Z H. Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method[J]. Journal of Materials Processing Technology, 2008, 197(1-3): 77-88.
[26] XUE X, LIAO J, VINCZE G, et al. Modelling of mandrel rotary draw bending for accurate twist springback prediction of an asymmetric thin-walled tube[J]. Journal of Materials Processing Technology, 2015, 216: 405-417.
[27] 理有亲, 林兆荣. 钛板冲压成形技术[M]. 北京: 国防工业出版社, 1986: 185-186. LI Y Q, LIN Z R. Ti-alloy sheet metal forming technology[M]. Beijing: Defense Industry Press, 1986: 185-186 (in Chinese).
[28] 《中国航空材料手册》编辑委员会. 中国航空材料手册[M]. 北京: 中国标准出版社, 2001: 10-20. Editor Commitee of China Aeronautical Materials Handbook. China aeronautical materials handbook[M]. Beijing: China Standard Press, 2001: 10-20 (in Chinese).
[29] 任露泉. 回归设计及其优化[M]. 北京: 科学出版社, 2009: 39-46. REN L Q. Regression design and its optimization[M]. Beijing: Science Press, 2009: 39-46 (in Chinese).
[30] Hibbit Karlson and Sorensen Inc.. Abaqus 6.9 documentation[M]. Washington, D. C.: Hibbit Karlson and Sorensen Inc., 2009: 180-200.
[31] 赵镇南. 传热学[M]. 北京: 高等教育出版社, 2002: 493-508. ZHAO Z N. Heat transfer[M]. Beijing: Higher Education Press, 2002: 493-508 (in Chinese).
[32] 马高山, 万敏, 吴向东. 5A90铝锂合金热态下本构关系研究[J]. 塑性工程学报, 2007, 14(3): 68-71. MA G S, WAN M, WU X D. Research on the constitutive relationship of 5A90 aluminum—lithium alloy at hot forming temperature[J]. Journal of plasticity engineering, 2007, 14(3): 68-71 (in Chinese). |