ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (1): 625929.doi: 10.7527/S1000-6893.2021.25929
• Special Topic of Shock/Boundary Layer Interation Mechanism and Control • Previous Articles Next Articles
SHI Xiaotian, LYU Meng, ZHAO Yuan, TAO Shancong, HAO Le, YUAN Xiangjiang
Received:
2021-06-07
Revised:
2021-09-23
Online:
2022-01-15
Published:
2021-09-22
Supported by:
CLC Number:
SHI Xiaotian, LYU Meng, ZHAO Yuan, TAO Shancong, HAO Le, YUAN Xiangjiang. Flow control technique for shock wave/turbulent boundary layer interactions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 625929.
[1] DOLLING D. 50 years of shock wave/boundary layer interactionresearch—What next?: AIAA-2000-2596[R]. Reston: AIAA, 2000. [2] ANDREOPOULOS Y, AGUI J H, BRIASSULIS G. Shock wave-turbulence interactions[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 309-345. [3] GREEN J E. Interactions between shock waves and turbulent boundary layers[J]. Progress in Aerospace Sciences, 1970, 11: 235-340. [4] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layerinteractions[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 469-492. [5] ADAMSON T C, MESSITER A F. Analysis of two-dimensional interactions between shock waves and boundary layers[J]. Annual Review of Fluid Mechanics, 1980, 12(1): 103-138. [6] SETTLES G, DODSON L. Hypersonic shock/boundary-layer interaction database: AIAA-1991-1763[R]. Reston: AIAA, 1991. [7] PANARAS A G, LU F K. Micro-vortex generators for shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 74: 16-47. [8] KRAL L D. Active flow control technology[R]. New York: ASME, 1998. [9] 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021, 42(6): 025371. WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371(in Chinese). [10] DOLLING D S. Fluctuating loads in shock wave/turbulent boundary layer interaction:Tutorial and update: AIAA-1993-0284[R]. Reston: AIAA, 1993. [11] CHAPMAN D R, KUEHN D M, LARSON H K. Investigation of separated flows in supersonic and subsonic stream with emphasis on the effect of transition: NACA-TN-3869[R]. Washington, D.C.: NACA, 1957. [12] DEGREZ G, GINOUX J. Three-dimensional skewed shock wave laminar boundary layer interaction at Mach 2.25: AIAA-1983-1755[R]. Reston: AIAA, 1983. [13] GRAMANN R A. Dynamics of separation and reattachment in a Mach 5 unswept compression ramp flow[D]. Austin: The University of Texas at Austin, 1989. [14] GRAMANN R A, DOLLING D S. Dynamics of separation and reattachment in a Mach 5 compression ramp flow: AIAA-1990-0380[R]. Reston: AIAA, 1990. [15] KISTLER A L. Fluctuating wall pressure under a separated supersonic flow[J]. The Journal of the Acoustical Society of America, 1964, 36(3): 543-550. [16] DEGREZ G, GINOUX J J. Surface phenomena in a three-dimensional skewed shock wave/laminar boundary-layer interaction[J]. AIAA Journal, 1984, 22(12): 1764-1769. [17] ERENGIL M E, DOLLING D. Separation shock motion and ensemble-averaged wall pressures in a Mach 5 compression ramp interaction: AIAA-1989-1853[R]. Reston: AIAA, 1989. [18] KUSSOY M L, BROWN J D, BROWN J L, et al. Fluctuations and massive separation in three-dimensional shock wave/boundary layer interactions[C]//2nd International Symposium of Transport Phenomena in Turbulent Flows, 1987. [19] MCCLURE W B, DOLLING D S. An experimental study of the driving mechanism and control of the unsteady shock-induced turbulent separation in a Mach 5 compression corner flow[D]. Austin: The University of Texas at Austin, 1992. [20] ERENGIL M E, DOLLING D S. Physical causes of separation shock unsteadiness in shock wave/turbulent boundary layer interactions: AIAA-1993-3134[R]. Reston: AIAA, 1993. [21] POZEFSKY P, BLEVINS R D, LAGANELLI A L. Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure: AFWAL-TR-89-3014[R]. 1989. [22] WANG J J, FENG L H. Flow control techniques and applications[M]. Cambridge: Cambridge University Press, 2018. [23] ANDREOPOULOS J, MUCK K C. Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows[J]. Journal of Fluid Mechanics, 1987, 180: 405-428. [24] DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal, 1983, 21(12): 1628-1634. [25] RINGUETTE M J, BOOKEY P, WYCKHAM C, et al. Experimental study of a Mach 3 compression ramp interaction at Reθ=2400[J]. AIAA Journal, 2009, 47(2): 373-385. [26] KUSUNOSE K, YU N J. Vortex generator installation drag on an airplane near its cruise condition[J]. Journal of Aircraft, 2003, 40(6): 1145-1151. [27] LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences, 2002, 38(4-5): 389-420. [28] ASHILL P, FULKER J, HACKETT K. Studies of flows induced by sub boundary layer vortex generators(SBVGs): AIAA-2002-0968[R]. Reston: AIAA, 2002. [29] ANDERSON B, TINAPPLE J, SURBER L. Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation: AIAA-2006-3197[R]. Reston: AIAA, 2006. [30] LEE S. Large eddy simulation of supersonic boundary layer interaction control using micro-vortex generators[D]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 2009. [31] LEE S, LOTH E, BABINSKY H. Normal shock boundary layer control with various vortex generator geometries[J]. Computers & Fluids, 2011, 49(1): 233-246. [32] BABINSKY H, LI Y, PITT FORD C W. Microramp control of supersonic oblique shock-wave/boundary-layer interactions[J]. AIAA Journal, 2009, 47(3): 668-675. [33] PITT FORD C W, BABINSKY H. Micro-ramp control for oblique shock wave/boundary layer interactions: AIAA-2007-4115[R]. Reston: AIAA, 2007. [34] SUN Z Z, SCARANO F, VAN OUDHEUSDEN B W, et al. Numerical and experimental investigations of the supersonic microramp wake[J]. AIAA Journal, 2014, 52(7): 1518-1527. [35] BLINDE P L, HUMBLE R A, VAN OUDHEUSDEN B, et al. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction[J]. Shock Waves, 2009, 19:507-520. [36] LI Q, LIU C Q. Implicit LES for supersonicmicroramp vortex generator: New discoveries and new mechanisms[J]. Modelling and Simulation in Engineering, 2011, 2011: 934982. [37] LIU C Q, SUN Z Z, WANG X, et al. The vortical structures in the rear separation and wake produced by a supersonic micro-ramp: AIAA-2013-0248[R]. Reston: AIAA, 2013. [38] LU F, PIERCE A, SHIH Y. Experimental study of near wake of micro vortex generators in supersonic flow: AIAA-2010-4623[R]. Reston: AIAA, 2010. [39] SUN Z, SCHRIJER F F J, SCARANO F, et al. The three-dimensional flow organization past a micro-ramp in a supersonic boundary layer[J]. Physics of Fluids, 2012, 24(5): 055105. [40] WANG B, LIU W D, ZHAO Y X, et al. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control[J]. Physics of Fluids, 2012, 24(5): 055110. [41] XUE D W, CHEN Z H, JIANG X H, et al. Numerical investigations on the wake structures of micro-ramp and micro-vanes[J]. Fluid Dynamics Research, 2014, 46(1): 015505. [42] GALBRAITH M, ORKWIS P, BENEK J. Multi-row micro-ramp actuators for shock wave boundary-layer interaction control: AIAA-2009-0321[R]. Reston: AIAA, 2009. [43] TROIA T, PATEL A, CROUSE D, et al. Passive device flow control for normal shock/boundary layer interactions in external compression inlets: AIAA-2011-3911[R]. Reston: AIAA, 2011. [44] GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. Flow control of an oblique shock wave reflection with micro-ramp vortex generators: Effects of location and size[J]. Physics of Fluids, 2014, 26(6): 066101. [45] 杨光, 方剑, 陆利蓬, 等. MVG控制斜激波/湍流边界层干涉的大涡模拟[J]. 航空动力学报, 2018, 33(7): 1639-1646. YANG G, FANG J, LU L P, et al. Large-eddy simulation of MVG controlled oblique shockwave/turbulent boundary layer interaction[J]. Journal of Aerospace Power, 2018, 33(7): 1639-1646(in Chinese). [46] YAN Y H, LIU C H. Further investigation on the physics of shock wave-vortex interaction in MVG controlled ramp flow: AIAA-2013-0401[R]. Reston: AIAA, 2013. [47] CHERN S, LOBSER G, SCHOONMAKER M, et al. LES for separated supersonic turbulent boundary layer and shock interaction: AIAA-2014-0437[R]. Reston: AIAA, 2014. [48] HOLDEN H, BABINSKY H. Effect of microvortex generators on seperated normal shock/boundary layer interactions[J]. Journal of Aircraft, 2007, 44(1): 170-174. [49] 胡万林, 于剑, 刘宏康, 等. 叶片式涡流发生器对压缩拐角流动分离的控制[J]. 航空学报, 2018, 39(7): 122049. HU W L, YU J, LIU H K, et al. Control of compression ramp flow separation via vane vortex generator[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122049(in Chinese). [50] ZHANG Y, TAN H J, DU M C, et al. Control of shock/boundary-layer interaction for hypersonic inlets by highly swept microramps[J]. Journal of Propulsion and Power, 2014, 31(1): 133-143. [51] 董祥瑞, 陈耀慧, 董刚, 等. 高超声速激波/边界层干扰及MVG阵列流动控制研究[J]. 工程力学, 2016, 33(7): 23-30. DONG X R, CHEN Y H, DONG G, et al. Studies on hypersonic shock wave/boundary layer interactions and flow control based on MVG array[J]. Engineering Mechanics, 2016, 33(7): 23-30(in Chinese). [52] SUN Z. Micro ramps in supersonic turbulent boundary layer[D]. Delft: Delft University of Technology, 2014. [53] RYBALKO M, BABINSKY H, LOTH E. VGs for a normal SBLI with a downstream diffuser: AIAA-2010-4464[R]. Reston: AIAA, 2010. [54] TITCHENER N, BABINSKY H. Control of a shock-wave/boundary-layer interaction and subsequent subsonic diffuser using a combination of vortex generators and bleed: AIAA-2012-0274[R]. Reston: AIAA, 2012. [55] TITCHENER N, BABINSKY H, LOTH E. The effects of various vortex generator configurations on a normal shock wave/boundary layer interaction: AIAA-2013-0018[R]. Reston: AIAA, 2013. [56] LOTH E, BABINSKY H. A representative flowfield of external compression inlets and diffusers: AIAA-2009-0032[R]. Reston: AIAA, 2009. [57] RYBALKO M, LOTH E, CHIMA R, et al. Micro-ramps for external-compression low-boom inlets: AIAA-2009-4206[R]. Reston: AIAA, 2009. [58] PANARAS A G. Review of the physics of swept-shock/boundary layer interactions[J]. Progress in Aerospace Sciences, 1996, 32(2-3): 173-244. [59] KNIGHT D, YAN H, PANARAS A G, et al. Advances in CFD prediction of shock wave turbulent boundary layer interactions[J]. Progress in Aerospace Sciences, 2003, 39(2-3): 121-184. [60] GAITONDE D, KNIGHT D. Numerical investigation of bleed on three-dimensional turbulent interactions due to sharp fins[J]. AIAA Journal, 1991, 29(11): 1878-1885. [61] MARTIS R R, MISRA A. Effect of height of microvortex generators on swept shock wave boundary layer interactions[J]. CEAS Aeronautical Journal, 2013, 4(3): 315-326. [62] MARTIS R R, MISRA A, SINGH A. Effect of microramps on separated swept shock wave-boundary-layer interactions[J]. AIAA Journal, 2014, 52(3): 591-603. [63] MOREAU E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605. [64] CORKE T C, ENLOE C L, WILKINSON S P. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 505-529. [65] WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62: 52-78. [66] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405(in Chinese). [67] LEONOV S, BITYURIN V, SAVELKIN K, et al. The features of electro-discharge plasma control of high-speed gas flows: AIAA-2002-2180[R]. Reston: AIAA, 2002. [68] GAN T, WU Y, SUN Z Z, et al. Shock wave boundary layer interaction controlled by surface arc plasma actuators[J]. Physics of Fluids, 2018, 30(5): 055107. [69] TANG M X, WU Y, GUO S G, et al. Effect of the streamwise pulsed arc discharge array on shock wave/boundary layer interaction control[J]. Physics of Fluids, 2020, 32(7): 076104. [70] WEBB N, CLIFFORD C, SAMIMY M. Control of oblique shock wave-boundary layer interactions using plasma actuators: AIAA-2012-2810[R]. Reston: AIAA, 2012. [71] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305. [72] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24(7): 076101. [73] YANG G, YAO Y F, FANG J, et al. Large-eddy simulation of shock-wave/turbulent boundary layer interaction and its control using sparkjet[J]. International Journal of Modern Physics: Conference Series, 2016, 42: 1660186. [74] WANG H Y, LI J, JIN D, et al. Manipulation of ramp-induced shock wave/boundary layer interaction using a transverse plasma jet array[J]. International Journal of Heat and Fluid Flow, 2017, 67: 133-137. [75] JIANG H, LIU J, LUO S C, et al. Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators[J]. Journal of Zhejiang University-Science A, 2020, 21(9): 745-760. [76] KALRA C S, ZAIDI S H, MILES R B, et al. Shockwave-turbulent boundary layer interaction control using magnetically driven surface discharges[J]. Experiments in Fluids, 2011, 50(3): 547-559. [77] BISEK N J, RIZZETTA D P, POGGIE J. Plasma control of a turbulent shock boundary-layer interaction[J]. AIAA Journal, 2013, 51(8): 1789-1804. [78] ATKINSON M D, POGGIE J, CAMBEROS J A. Control of separated flow in a reflected shock interaction using a magnetically-accelerated surface discharge[J]. Physics of Fluids, 2012, 24(12): 126102. [79] SOUVEREIN L J, DEBIÈVE J F. Effect of air jet vortex generators on a shock wave boundary layer interaction[J]. Experiments in Fluids, 2010, 49(5): 1053-1064. [80] ALI M Y, ALVI F, MANISANKAR C, et al. Studies on the control of shock wave-boundary layer interaction using steady microactuators: AIAA-2011-3425[R]. Reston: AIAA, 2011. [81] WHITE M E, LEE R E, THOMPSON M W, et al. Tangential mass addition for shock/boundary-layer interaction control in scramjet inlets[J]. Journal of Propulsion and Power, 1991, 7(6): 1023-1029. [82] SMITH A N, BABINSKY H, FULKER J L, et al. Shock wave/boundary-layer interaction control using streamwise slots in transonic flows[J]. Journal of Aircraft, 2004, 41(3): 540-546. [83] HAMED A, SHANG J S. Survey of validation data base for shockwave boundary-layer interactions in supersonic inlets[J]. Journal of Propulsion and Power, 1991, 7(4): 617-625. [84] SHIH T I P. Control of shock-wave/boundary-layer interactionS by bleed[J]. International Journal of Fluid Machinery and Systems, 2008, 1(1): 24-32. [85] SRIRAM R, JAGADEESH G. Shock tunnel experiments on control of shock induced large separation bubble using boundary layer bleed[J]. Aerospace Science and Technology, 2014, 36: 87-93. [86] 董明, 赵慧勇. 超声速边界层中壁面抽吸对流动分离的抑制作用[J]. 气体物理, 2019, 4(2): 17-29. DONG M, ZHAO H Y. Suppression of flow separation by wall suction in supersonic boundary layers[J]. Physics of Gases, 2019, 4(2): 17-29(in Chinese). [87] NAGAMATSU H, OROZCO R. Porosity effect on supercritical airfoil drag reduction by shock wave/boundary layer control: AIAA-1984-1682[R]. Reston: AIAA,1984. [88] NAGAMATSU H, FICARRA R. Supercritical airfoil drag reduction by passive shock wave/boundary layer control in the Mach number range.75 to.90: AIAA-1985-0207[R]. Reston: AIAA, 1985. [89] GILLAN M. Computational analysis of drag reduction and buffet alleviation in viscous transonic flow over porous airfoils: AIAA-1993-3419[R]. Reston: AIAA, 1993. [90] GEFROH D, HAFENRICHTER E, MCILWAIN S, et al. Simulation and experimental analysis of a novel SBLI flow control system: AIAA-2000-2237[R]. Reston: AIAA, 2000. [91] KIM S D, SONG D J. Numerical study on performance of supersonic inlets with various three-dimensional bumps[J]. Journal of Mechanical Science and Technology, 2008, 22(8): 1640-1647. [92] OGAWA H, BABINSKY H, PÄTZOLD M, et al. Shock-wave/boundary-layer interaction control using three-dimensional bumps for transonic wings[J]. AIAA Journal, 2008, 46(6): 1442-1452. [93] 张悦, 谭慧俊, 张启帆, 等. 一种进气道内激波/边界层干扰控制的新方法及其流动机理[J]. 宇航学报, 2012, 33(2): 265-274. ZHANG Y, TAN H J, ZHANG Q F, et al. A new method and its flow mechanism for control of shock/boundary layer interaction in hypersonic inlet[J]. Journal of Astronautics, 2012, 33(2): 265-274(in Chinese). |
[1] | Chang WANG, Long HE, Dongxia XU, Min TANG, Shuai MA, Ximing WU. Flow control drag reduction of hub on coaxial rigid rotor aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529084-529084. |
[2] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
[3] | Wei XIE, Zhenbing LUO, Yan ZHOU, Qiang LIU, Jianjun WU, Hao DONG. Double wedge shock interaction control using steady jet in hypersonic flow: Experimental study [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128813-128813. |
[4] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[5] | Wenbiao GAN, Junjie ZHUANG, Jinwu XIANG, Zhenjie ZUO, Zhijie ZHAO, Zhenbing LUO. Research progress on flow control of propeller for low dynamic near⁃space vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530086-530086. |
[6] | Songbai WANG, Yuyang HAO, Yadong WU, Yong CHEN, Huawei YU, Lin DU. Research progress on rotating instability of aeroengine compressor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 29851-029851. |
[7] | Ke ZHAO, Jun DENG, Jiangtao HUANG, Shusheng CHEN, Zhenghong GAO. Aerodynamic optimization design of high and low speed integration for flying wing layout [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 129367-129367. |
[8] | Ziyun WANG, Hang YU, Yue ZHANG, Huijun TAN, Yi JIN, Xin LI. Research progress on key issues of adjustable inlet system for aerospace vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529440-529440. |
[9] | Xiaogang XU, Yang ZHANG, Tianbo WANG, Xudong MA, Gang CHEN. Mixing enhancement effect of multi-size water droplet spray [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729130-729130. |
[10] | Shiqi GAO, Bo DING, Xuzhen XIE, Zheng LI, Lin CHEN, Shouyuan QIAN, Zihan JIAO, Guanghui BAI. Drag reduction mechanism using plasma synthetic jet in high⁃speed flow [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729373-729373. |
[11] | Wang WANG, Caiyan RAO, Cong XU, Siyi LI, Yi DUAN, Jian ZHANG. Control effect of laser energy deposition on supersonic inlet flow [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729424-729424. |
[12] | Haoxiang WANG, Yao XIAO, Kaikai ZHANG, Guangli LI, Siyuan CHANG, Zhongwei TIAN, Kai CUI. Effect of body trailing edge shape on subsonic flow characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127215-127215. |
[13] | Jian ZHANG, Min ZHANG, Juan DU, Weiliang HUANG, Chaoqun NIE. Experimental investigation into adaptive Coanda jet control in highly loaded compressor [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128883-128883. |
[14] | Shijun SUN, Xiaolong LI, Yanming LIU, Jianhua WANG, Songtao WANG. Influence of wide-speed-range inflow on aerodynamic performance of supersonic through-flow fan cascade [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528523-528523. |
[15] | Mengge WANG, Xiaoming HE, Juanjuan WANG, Yue ZHANG, Kun WANG, Huijun TAN, Liugang LI. Shock wave/boundary layer interaction control method based on oscillating vortex generator [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 128503-128503. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341