[1] 鲁宇. 中国运载火箭技术发展[J]. 宇航总体技术, 2017, 1(3):1-8. LU Y. Space launch vehicle's development in China[J]. Astronautical Systems Enginerring Technology, 2017, 1(3):1-8(in Chinese). [2] 杨泗智, 龚春林, 郝波, 等. 基于落点预测的高旋火箭弹弹道修正算法[J]. 航空学报, 2020, 41(2):323421. YANG S Z, GONG C L, HAO B, et al. Ballistic trajectory correction algorithms of high-spin rocket based on impact point prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):323421(in Chinese). [3] CELANI F. Global and robust attitude control of a launch vehicle in exoatmospheric flight[J]. Aerospace Science and Technology, 2018, 74:22-36. [4] 宋征宇. 运载火箭远程故障诊断技术综述[J]. 宇航学报, 2016, 37(2):135-144. SONG Z Y. The survey of launch vehicle long distance fault diagnosis technique[J]. Journal of Astronautics, 2016, 37(2):135-144(in Chinese). [5] 沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述[J]. 宇航学报,2020, 41(6):647-656. SHEN Y, LI L L, WANG Z H. A review of fault diagnosis and fault-tolerant control techniques for spacecraft[J]. Journal of Astronautics, 2020, 41(6):647-656(in Chinese). [6] YIN S, XIAO B, DING S T, et al. A review on recent development of spacecraft attitude fault tolerant control system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3311-3320. [7] 邵书义, 陈谋, 招启军. 基于干扰观测器的四旋翼无人机离散时间容错控制[J]. 航空学报, 2020, 41(S2):724283(in Chinese). SHAO S Y, CHEN M, ZHAO Q J. Discrete-time fault-tolerant control for quadrotor UAV based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2):724283. [8] 朱海洋, 吴燕生, 容易, 等. 适应有限故障的运载火箭神经网络自适应容错控制[J]. 西北工业大学学报, 2020, 38(3):668-676. ZHUHY,WUYS,RONGY,et al. Aneuralnetwork adaptive fault-olerant controlmethod for launch vehicles with the limitedfaults[J]. Journal of NorthwesternPolytechnical University, 2020, 38(3):668-676(in Chinese). [9] ZHANG L, WEI C, WU R, et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle[J]. Acta Astronautica, 2019, 159:362-370. [10] ZHANG L, WEI C Z, WU R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82-83:70-79. [11] 王乾, 李清, 程农, 等. 一种针对结构损伤的非线性容错飞行控制方法[J]. 航空学报, 2016, 37(2):637-647. WANG Q, LI Q, CHENG N, et al. A nonlinear fault tolerant flight control method against structural damage[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):637-647(in Chinese). [12] SHEN Q, WANG D W, ZHU S, et al. Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft[J]. IEEE Transactions on Control System Technology, 2015, 23(3):1131-1138. [13] SHEN Q, WANG D W, ZHU S, et al. Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation[J]. IEEE Transactions on Aerospace Electronic System, 2015, 51(3):2390-2405. [14] BERTSEKAS D, Value and policy iterations in optimal control and adaptive dynamic programming[J]. IEEE Transactions on Neural Network and Learning System, 2015, 28(3):500-509. [15] 孙景亮, 刘春生. 基于自适应动态规划的导弹制导律研究综述[J]. 自动化学报, 2017, 43(7):1101-1113. SUN J L, LIU C S. An Overview on the Adaptive Dynamic Programming Based Missile Guidance Law[J]. Acta Automatica Sinica, 2017, 43(7):1101-1113(in Chinese). [16] 张化光, 张欣,罗艳红, 等. 自适应动态规划综述[J]. 自动化学报, 2013, 39(4):303-311. ZHANG H G, ZHANG X, LUO Y H, et al. An overview of research on adaptive dynamic programming[J]. Acta Automatica Sinica, 2013, 39(4):303-311(in Chinese). [17] ZHAO B, LIU D, YANG X, et al. Observer-critic structure-based adaptive dynamic programming for decentralized tracking control of unknown large-scale nonlinear systems[J]. International Journal of System Science, 2017, 48(9):1978-1989. [18] ZHOU Y, KAMPEN E, CHU Q. Nonlinear adaptive flight control using incremental approximate dynamic programming and output feedback[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2):493-496. [19] MU C, NI Z, SUN C, et al. Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming[J]. IEEE Transactions on Neural Network and Learning System, 2016, 28(3):584-598. [20] ZHAO D J, WANG Y J, LIU L, et al. Robust fault-tolerant control of launch vehicle via GPI observer and integral sliding mode control[J]. Asian Journal of Control, 2013, 15(2):614-623. [21] 杨希祥, 张为华. 小型固体运载火箭六自由度弹道仿真[J]. 航空学报, 2010, 31(1):41-47. YANG X X, ZHANG W H. Six-Degree-of-Freedom Trajectory Simulation of Small Solid Launch Vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):41-47(in Chinese). [22] 韩治国, 张科, 吕梅柏, 等. 航天器自适应快速非奇异终端滑模容错控制[J]. 航空学报, 2016, 37(10):3092-3100. HAN Z G, ZHANG K, LYU M B, et al. Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3092-3100(in Chinese). [23] GAO Z F, ZHOU Z P, QIAN M S, et al. Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults[J]. IET Control Theory Applications, 2018, 12(3):405-412. [24] GOU Y Y, LI H B, DONG X M, et al. Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities[J]. Chinese Journal of Aeronautics, 2017, 30(2):796-806. [25] XU B. Composite learning finite-time control with application to quadrotors[J]. IEEE Transactions on Systems, Man, and Cybernetics:System, 2018, 48(10):1806-1815. [26] HEYDARI A. Theoretical and numerical analysis of approximate dynamic programming with approximation errors[J]. Journal of Guidance, Control, and Dynamics, 39(2):301-311. [27] GONG L G, WANG Q, DONG C Y. Spacecraft output feedback attitude control based on extended state observer and adaptive dynamic programming[J]. Journal of the Franklin Institute, 2019, 356(10):4971-5000. [28] WANG Q, GONG L G, DONG C Y, et al. Morphing aircraft control based on switched nonlinear systems and adaptive dynamic programming[J]. Aerospace Science and Technology, 2019, 93:105325. |