[1] 张庆虎. 超声速流动分离及其控制的试验研究[D]. 长沙:国防科技大学, 2013:1-141. ZHANG Q H. Experimental investigation of supersonic flow separation and its micro-ramp control[D]. Changsha:National University of Defense Technology, 2013:1-141(in Chinese). [2] DUPONT P, HADDAD C, DEBIÈVE J F. Space and time organization in a shock-induced separated boundary layer[J]. Journal of Fluid Mechanics, 2006, 559:255-277. [3] BABINSKY H, HARVEY J K. 激波边界层干扰[M]. 白菡尘, 译. 北京:国防工业出版社, 2015:12. BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions[M]. BAI H C, translated. Beijing:National Defense Industry Press, 2015:12(in Chinese). [4] LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences, 2002, 38(4):389-420. [5] TAYLOR H D. The elimination of diffuser separation by vortex generators:R-4012-3[R]. Moscow:United Aircraft Corporation, 1947. [6] SCHUBAUER G B, SPANGENBER W G. Forced mixing in boundary layers[J]. Journal of Fluid Mechanics, 2006, 8:10-32. [7] BRAGG M B, GREGOREK G M. Experimental study of airfoil performance with vortex generators[J]. Journal of Aircraft, 1987, 24(5):305-309. [8] PEARCEY H H. Introduction to shock induced separation and its prevention by design and boundary layer control[M]//Boundary Layer and Flow Control. 1961:1166-1344. [9] JENKINS L, GORTON S A, ANDERS S. Flow control device evaluation for an internal flow with an adverse pressure gradient:AIAA-2002-0266[R]. Reston, VA:AIAA, 2002. [10] GAO L Y, ZHANG H, LIU Y Q. Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines[J]. Renewable Energy, 2015, 76:303-311. [11] CALARESE W, CRISLER W P, GUSTSFSON G L. Afterbody drag reduction by vortex generators:AIAA-1985-0354[R]. Reston, VA:AIAA, 1985. [12] BROWN A C, NAWROCKI H F, PALEY P N. Subsonic diffusers designed integrally with vortex generators[J]. Journal of Aircraft, 1968, 5(3):221-229. [13] KUETHE A M. Effect of streamwise vortices on wake properties associated with sound generation[J]. Journal of Aircraft, 1972, 9(10):715-719. [14] ASHILL P R, FULKER J L, HACKETT K C. Research at DERA on sub boundary layer vortex generators:AIAA-2001-0877[R]. Reston, VA:AIAA, 2001. [15] ANDERSON B H, TINAPPLE J A, SURBER L E. Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation:AIAA-2006-3197[R]. Reston, VA:AIAA, 2006. [16] SCHREYER A M, BERMEJO-MORENO I, KIM J, et al. Separation control in a hypersonic compression ramp interaction[R]. Stanford, CA:Center for Turbulence Research of Stanford University, 2016. [17] YAN Y, CHEN L, LI Q, et al. Numerical study of micro-ramp vortex generator for supersonic ramp flow control at Mach 2.5[J]. Shock Waves, 2016, 27(1):1-18. [18] 褚胡冰, 陈迎春, 张彬乾, 等. 增升装置微型涡流发生器数值模拟方法研究[J]. 航空学报, 2012, 33(1):11-21. CHU H B, CHEN Y C, ZHANG B Q, et al. Investigation of numerical simulation technique for micro vortex generators applied to high lift system[J]. Acta Aeronautica et Astronautica, 2012, 33(1):11-21(in Chinese). [19] 赵瑞, 阎超. 超声速复杂流动中湍流模型的性能评估[J]. 北京航空航天大学学报, 2011, 37(2):202-215. ZHAO R, YAN C. Evaluation of engineering turbulence models for complex supersonic flows[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(2):202-215(in Chinese). [20] SETTLES G S, FITZPATRICK T J, BOGDONOFF S M. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow[J]. AIAA Journal, 1979, 17(6):579-585. [21] ASHILL P R, FULKER J L, HACKETT K C. Studies of flows induced by sub boundary layer vortex generators (SBVGs):AIAA-2002-0968[R]. Reston, VA:AIAA, 2002. [22] HUNT J C R, WRAY A A, MOIN P. Eddies stream and convergence zones in turbulent flow:N89-24555[R]. Washington, D.C.:NASA, 1988. |