[1] Defense Science Board. Final report of the second defense science board task on the national aero-space plane (NASP):AD-A274530, 1994-00052[R]. 1994. [2] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3):311-337. CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition:What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35:311-337(in Chinese). [3] 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1):357-372. LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372(in Chinese). [4] 解少飞, 杨武兵, 沈清. 高超声速边界层转捩机理及应用的若干进展回顾[J]. 航空学报, 2015, 36(3):714-723. XIE S F, YANG W B, SHEN Q. Review of progresses in hypersonic boundary layer transition mechanism and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):714-723(in Chinese). [5] MACK L M. Boundary layer linear stability theory:AGARD 709[R]. Paris:AGARD, 1984. [6] STETSON K F, THOMPSON E R, DONALDSON J C, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Part 2:Blunt cone:AIAA-1984-0006[R]. Reston:AIAA, 1984. [7] FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43:79-95. [8] ZHONG X, WANG X. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44:527-561. [9] BALAKUMAR P. Receptivity of hypersonic boundary layers to acoustic and vortical disturbances:AIAA-2015-2473[R]. Reston:AIAA, 2015. [10] 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报, 2019, 40(8):122740. LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122740(in Chinese). [11] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型[J]. 航空学报, 2015, 36(6):1814-1822. XU J K, BAI J Q, QIAO L, et al. Transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1814-1822(in Chinese). [12] 赵磊. 高超声速后掠钝板边界层横流定常涡失稳的研究[D]. 天津:天津大学, 2016. ZHAO L. Study on instability of stationary crossflow vortices in hypersonic swept blunt plate boundary layer[D]. Tianjin:Tianjin University, 2016(in Chinese). [13] JOEL E G, HEATH B J, GRAHAM V C. Hypersonic three-dimensional boundary layer transition on a cone at angle of attack:AIAA-2011-3561[R]. Reston:AIAA, 2011. [14] DUAN L, CHOUDHARI M M, LI F. Direct numerical simulation of transition in a swept-wing boundary layer:AIAA-2013-2617[R]. Reston:AIAA, 2013. [15] XU G L, LIU G, JIANG X. The nonlinear instability of the supersonic crossflow vortex:AIAA-2014-2637[R]. Reston:AIAA, 2014. [16] PARADES P, THEOFILIS V. Spatial linear global instability analysis of the HIFiRE-5 elliptic cone mode flow:AIAA-2013-2880[R]. Reston:AIAA, 2013. [17] 李晓虎, 张绍龙, 刘建新, 等.高超声速椭圆锥短轴流向涡的二维全局稳定性分析[J].空气动力学学报, 2018, 36(2):265-272. LI X H, ZHANG S L, LIU J X, et al.Bi-Global instability of streamwise vortices near minor-axis of hypersonic elliptic cone[J].Acta Aerodynamica Sinica, 2018, 36(2):265-272(in Chinese). [18] REN J, FU S. Secondary instabilities of Görtler vortices in high-speed boundary layer flow[J]. Journal of Fluid Mechanics, 2015, 781:388-421. [19] XU D, ZHANG Y, WU X. Nonlinear evolution and secondary instability of steady and unsteady Görtler vortices induced by free-stream vertical disturbances[J]. Journal of Fluid Mechanics, 2017, 829:681-730. [20] CHEN X, HUANG G L, LEE C B. Hypersonic boundary layer transition on a concave wall:stationary Gortler vortices[J]. Journal of Fluid Mechanics, 2019, 865:1-40. [21] MACK C J, SCHMID P J. Direct numerical study of hypersonic flow about a swept parabolic body[J]. Computer and Fluid, 2010, 39:1932-1943. [22] BORG M P, KIMMEL R L, STANFIELD S. HIFiRE-5 attachment-line and crossflow instability in a quiet hypersonic wind tunnel:AIAA-2011-3247[R]. Reston:AIAA, 2011. [23] DOLVIN D J. Hypersonic international flight research and experimentation:AIAA-2009-7228[R]. Reston:AIAA, 2009. [24] WHEATON B M, BERRIDGE D C, WOLF T D, et al. Boundary layer transition (BOLT) flight experiment overview:AIAA-2018-2892[R]. Reston:AIAA, 2018. [25] 袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2):286-293. YUAN X X, HE K, CHEN J Q, et al. Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2):286-293(in Chinese). [26] 陈坚强, 袁先旭, 涂国华, 等. 高超声速边界层转捩的几点认识[J]. 中国科学:物理学力学天文学, 2019, 49:114701. CHEN J Q, YUAN X X, TU G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49:114701(in Chinese). [27] 涂国华, 万兵兵, 陈坚强, 等. MF-1钝锥边界层稳定性及转捩天地相关性研究[J]. 中国科学:物理学力学天文学, 2019, 49:124701. TU G H, WAN B B, CHEN J Q, et al. Investigation on correlation between wind tunnel and flight for boundary layer stability and transition of MF-1 blunt cone[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49:124701. (in Chinese). [28] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:24-44. [29] DENG X G, MAO M L, TU G H, et al. High-order and high accurate CFD methods and their applications for complex grid problems[J]. Communication in Computational Physics, 2012,11(4):1081-1102. [30] 涂国华, 邓小刚, 毛枚良. 消除粘性项高阶离散数值振荡的半结点-结点交错方法[J].空气动力学学报, 2011, 29(1):10-15. TU G H, DENG X G, MAO M L. A staggered non-oscillatory finite difference method for high-order discretization of viscous terms[J]. Acta Aerodynamica Sinica, 2011, 29(1):10-15(in Chinese). [31] YOON S, JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9):1025-1026. [32] KERVIK A, BRANDT E, HENNINGSON L, et al. Steady solutions of the Navier-Stokes equations by selective frequency damping[J]. Physics of Fluids, 2006, 18(6):068102. [33] 周恒, 赵耕夫. 流动稳定性[M]. 北京:国防工业出版社, 2004. ZHOU H, ZHAO G F. Hydrodynamic stability[M]. Beijing:National Defense Industry Press, 2004(in Chinese). [34] 张绍龙, 黄章峰, 罗纪生. 三维边界层中考虑等效展向波数的线性稳定性方法[C]//中国力学大会, 2015. ZHANG S L, HUANG Z F, LUO J S.A linear stability method considering thee quivalent spread wavenumber in the three dimensional boundary layer[C]//China Mechanics Conference, 2015(in Chinese). [35] 黄章峰, 肖凌晨, 罗纪生. 超声速边界层转捩预测eN方法及其软件开发[J]. 空气动力学学报, 2018, 36(2):279-285. HUANG Z F, XIAO L C, LUO J S. Transition prediction eN method and its software development for supersonic boundary layers[J]. Acta Aerodynamica Sinica, 2018, 36(2):279-285(in Chinese). [36] FEDOROV A V. Receptivity of high speed boundary layer to acoustic disturbances[J]. Journal of Fluid Mechanics, 2003, 491(491):101-129. [37] GAO J, LUO J S, WU X S. Receptivity of hypersonic boundary layer due to fast-slow acoustics interaction[J]. Acta Mechanica Sinica, 2015, 31(6):899-909. [38] PEREDES P, GOSSE R, THEOFILIS V, et al. Linear modal instabilities of hypersonic flow over an elliptic cone[J]. Journal of Fluid Mechanics, 2016, 804:442-466. |