[1] DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal, 1983, 21(12):1628-1634.[2] DUPONT P, HADDAD C, DEBIEVE J F. Space and time organization in a shock induce separated boundary layer[J]. Journal of Fluid Mechanics, 2006, 559:255-277.[3] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:What next?[J]. AIAA Journal, 2001, 39(8):1517-1530.[4] EDWARD J R. Numerical simulation of shock/boundary layer interactions using time dependent modeling techniques:A survey of recent results[J]. Progress in Aerospace Sciences, 2008, 44(6):447-465.[5] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99.[6] LEE C B, WANG S. Study of the shock motion in a hypersonic shock system/turbulent boundary layer interaction[J]. Experiments in Fluids, 1995, 19(3):143-149.[7] CLEMENS N T, NARAYANASWAMY V. Low frequency unsteadiness of shock wave turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1):469-492.[8] GANAPATHISUBRAMANI B, CLEMENS N T, DO-LLING D S. Low frequency dynamics of shock induced separation in a compression ramp interaction[J]. Journal of Fluid Mechanics, 2009, 636:397-425.[9] PRIEBE S, MARTIN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699(5):1-49.[10] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656(10):5-28.[11] SCHMID P J. Application of the dynamic mode decomposition to experimental data[J]. Experiments in Fluids, 2011, 50(4):1123-1130.[12] ROWLEY C W, MEZIC I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641:115-127.[13] WYNN A, PEARSON D, GANAPATHISUBRAMANI B, et al. Optimal mode decomposition for unsteady flows[J]. Journal of Fluid Mechanics, 2013, 733(2):473-503.[14] JOVANOVIC M R, SCHMID P J, NICHOLS J W. Sparsity promoting dynamic mode decomposition[J]. Physics of Fluids, 2014, 26(2):024103.[15] GRILLI M, SCHMID P J. Analysis of unsteady behaviour in shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700(6):16-28.[16] STEPHAN P, TU J H, ROWLEY C W, et al. Low-frequency dynamics in a shock-induced separated flow[J]. Journal of Fluid Mechanics, 2016, 807:441-477.[17] TONG F L, TANG Z G, YU C P, et al. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls[J]. Journal of Turbulence, 2017, 18(6):569-588.[18] STANTNIKOV V, SAYADI T, MEINKE M, et al. Analysis of pressure perturbation sources on a generic space launcher after-body in supersonic flow using zonal turbulence modeling and dynamic mode decomposition[J]. Physics of Fluids, 2015, 27(1):016103.[19] 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9):2679-2689. KOU J Q, ZHANG W W, GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2679-2689(in Chinese).[20] SAYADI T, SCHMID P J, NICHOLS J W, et al. Reduced-order representation of near-wall structures in the late transitional boundary layer[J]. Journal of Fluid Mechanics, 2014, 748(2):278-301.[21] DUCOIN A, LOISEAU J C, ROBINET J C. Numerical investigation of the interaction between laminar to turbulent transition and the wake of an airfoil[J]. European Journal of Mechanics B/Fluids, 2016, 57:231-248.[22] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):030802.[23] ZHANG C H, ZHU Y D, CHEN X, et al. Transition in hypersonic boundary layers[J]. AIAA Journal, 2016, 54(10):1-11.[24] 童福林, 唐志共, 李新亮, 等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016, 37(12):3588-3604. TONG F L, TANG Z G, LI X L, et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3588-3604(in Chinese).[25] 童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析[J]. 力学学报, 2017, 49(1):93-104. TONG F L, LI X L, TANG Z G. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1):93-104(in Chinese).[26] MARTIN M P, TAYLOR E M, WU M. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1):270-289.[27] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6):065113.[28] RINGUETTE M, WU M, MARTIN M P. Low Reynolds number effects in a Mach 3 shock/turbulent boundary layer interaction[J]. AIAA Journal, 2008, 46(7):1884-1887.[29] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.[30] WU M, MARTIN M P. Analysis of shock motion in shock wave and turbulent boundary layer interaction using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2008, 594:71-83. |