[1] BERRY S A, DARYABEIGI K, WURSTER K. Boundary-layer transition on X-43A[J]. Journal of Spacecraft and Rockets, 2010, 47(6):922-934.
[2] KLEBANOFF P S, TIDSTROM K D. Mechanism by which a two-dimensional roughness element induces boundary-layer transition[J]. Physics of Fluids, 1972, 15(7):1173-1188.
[3] RESHOTKO E, TUMIN A. Role of transient growth in roughness-induced transition[J]. AIAA Journal, 2004, 42(4):766-770.
[4] SESCU A, PENDYALAY R K, THOMPSON D. On the growth of G rtler vortices excited by distributed roughness elements:AIAA-2014-2885[R]. Reston:AIAA, 2014.
[5] LI F, MALIK M R. Fundamental and subharmonic secondary instabilities of G rtler vortices[J]. Journal of Fluid Mechanics, 1995, 297:77-100.
[6] LI F, CHOUDHARI M, CHANG C L, et al. Development and breakdown of G rtler vortices in high speed boundary layers:AIAA-2010-705[R]. Reston:AIAA, 2010.
[7] TULLIO N D, PAREDES P, SANDHAM N D, et al. Laminar-turbulent transition induced by a discrete roughness element in a supersonic boundary layer[J]. Journal of Fluid Mechanics, 2013, 735:613-646.
[8] BERRY S A, HORVATH T J. Discrete-roughness transition for hypersonic flight vehicles[J]. Journal of Spacecraft and Rockets, 2008, 45(2):216-227.
[9] BERRY S A, AUSLENDER A H, DILLEY A D, et al. Hypersonic boundary layer trip development for Hyper-X[J]. Journal of Spacecraft and Rockets, 2001, 38(6):853-864.
[10] BERRY S A, NOWAK R J, HORVATH T J. Boundary layer control for hypersonic airbreathing vehicles:AIAA-2004-2246[R]. Reston:AIAA, 2004.
[11] 赵慧勇, 周瑜, 倪鸿礼, 等. 高超声速进气道边界层强迫转捩试验[J]. 实验流体力学, 2012, 26(1):1-6. ZHAO H Y, ZHOU Y, NI H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):1-6(in Chinese).
[12] DANEHY P M, BATHEL B, IVEY C, et al. NO PLIF study of hypersonic transition over a discrete hemispherical roughness element:AIAA-2009-0394[R]. Reston:AIAA, 2009.
[13] 冈敦殿, 易仕和, 陈植, 等. 超声速平板上直立圆台突起物绕流流场研究[C]//中国力学大会-2013. 北京:中国力学学会, 2013. GANG D D, YI S H, CHEN Z, et al. Flow field investigations of supersonic flow over a circular protuberance mounted on a flat plate[C]//CCTAM-2013. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013(in Chinese).
[14] 张庆虎. 超声速流动分离及其控制的试验研究[D]. 长沙:国防科学技术大学, 2013. ZHANG Q H. Experimental investigation of supersonic flow separation and its micro-ramp control[D]. Changsha:National University of Defense Technology, 2013(in Chinese).
[15] BORG M P, SCHNEIDER S P. Effect of freestream noise on roughness-induced transition for the X-51A forebody[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1106-1116.
[16] 邓小兵. 来流噪声对高超声速进气道强制转捩的影响[C]//中国力学大会-2013. 北京:中国力学学会, 2013. DENG X B. Freestream noise impact on forced transition of hypersonic boundary layer[C]//CCTAM-2013. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013(in Chinese).
[17] MARXEN O, IACCARINO G, SHAQFEH E S G. Numerical simulations of hypersonic boundary-layer instability with localized roughness:AIAA-2011-0567[R]. Reston:AIAA, 2011.
[18] IYER P S, MUPPIDI S, MAHESH K. Roughness-induced transition in high speed flows:AIAA-2011-0566[R]. Reston:AIAA, 2011.
[19] DUAN Z W, XIAO Z X, FU S. Direct numerical simulation of hypersonic transition induced by ramp roughness elements:AIAA-2014-2037[R]. Reston:AIAA, 2014.
[20] DUAN Z W, XIAO Z X. Direct numerical simulation of geometrical parameter effects on the hypersonic ramp-induced transition:AIAA-2014-2495[R]. Reston:AIAA, 2014.
[21] 涂国华, 燕振国, 赵晓慧, 等. SA和SST湍流模型对高超声速边界层强制转捩的适应性[J]. 航空学报, 2015, 36(5):1471-1479. TU G H, YAN Z G, ZHAO X H, et al. SA and SST turbulence models for hypersonic forced boundary layer transition[J]. Acta Aeronautica et Astronautia Sinica, 2015, 36(5):1471-1479(in Chinese).
[22] 周玲, 闫超, 孔维萱. 高超声速飞行器前体边界层强制转捩数值模拟[J]. 航空学报, 2014, 35(6):1487-1495. ZHOU L, YAN C, KONG W X. Numerical simulation of forced boundary layer transition on hypersonic vehicle forebody[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1487-1495(in Chinese).
[23] 周玲, 闫超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4):1092-1102. ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1092-1102(in Chinese).
[24] SAYADI T, MOIN P. Large eddy simulation of controlled transition to turbulence[J]. Physics of Fluids, 2012, 24(11):923-938.
[25] ORLIK E, FEDIOUN I. Hypersonic boundary-layer transition forced by wall injection:A numerical study[J]. Journal of Spacecraft and Rockets, 2014, 51(4):1306-1318.
[26] 邓小兵, 金玲. 让误差飞一会儿——湍流大涡模拟中的动态自适应迎风方法[C]//中国力学大会-2013. 北京:中国力学学会, 2013. DENG X B, JIN L. Let the error fly for a while-A dynamic adaptive upwind method for large eddy simulations of turbulent flow[C]//CCTAM-2013. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013(in Chinese).
[27] 朱自强, 吴子牛, 李津, 等. 应用计算流体力学[M]. 北京:北京航空航天大学出版社, 1998:54-88. ZHU Z Q, WU Z N, LI J, et al. Application of computational fluid dynamics[M]. Beijing:Beihang University Press, 1998:54-88(in Chinese).
[28] JAMESON A. Time dependent calculations using multigrid with application to unsteady flows past airfoils and wings:AIAA-1991-1596[R]. Reston:AIAA, 1991.
[29] YOON S, JAMESON A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9):1025-1026.
[30] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers with varying freestream Mach number:AIAA-2010-0353[R]. Reston:AIAA, 2010.
[31] LUND T S, WU X, SQUIRES K D. Generation of turbulent inflow data for spatially-developing boundary layer simulations[J]. Journal of Computational Physics, 1998, 140(2):233-258.
[32] EDWARDS J R, CHOI J, BOLES J A. Hybrid LES/RANS simulation of a mach 5 compression-corner interaction:AIAA-2008-0718[R]. Reston:AIAA, 2008.
[33] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649
[34] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston:AIAA, 1992.
[35] GEORGIADIS N J, RIZZETTA D P, FUREBY C. Large-eddy simulation:current capabilities, recommended practices, and future research[J]. AIAA Journal, 2010, 48(8):1772-1784. |