[1] PLOTKIN K J. Shock wave oscillation driven by turbulent boundary layer fluctuations[J]. AIAA Journal, 1975, 13(8):1036-1040.
[2] POGGIE J, SMITS A J. Experimental evidence for plotkin model of shock unsteadiness in separated flow[J]. Physics of Fluids, 2005, 17(1):018107.
[3] TOUBER E, SANDHAM N D. Low order stochastic modeling of low-frequency motions in reflected shock-wave boundary layer interactions[J]. Journal of Fluid Mechanics, 2011, 671(3):417-465.
[4] DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal, 1983, 21(12):628-634.
[5] ADAMS N A. Direct simulation of the turbulent boundary layer along a compression ramp at M=3 and Reθ=1685[J]. Journal of Fluid Mechanics, 2000, 420(3):47-83.
[6] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large eddy simulation of shock wave and turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2006, 565(1):135-169.
[7] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:what next?[J]. AIAA Journal, 2001, 39(8):1517-1530.
[8] CHAPMAN D R, KUEHN D M, LARRSON H K. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transitions:NACA Report 1356[R]. Washington, D.C.:NASA, 1958.
[9] MURPHREE Z R, YUCEIL K B, CLEMENS N T, et al. Experimental studies of transitional boundary layer shock wave interactions:AIAA-2007-1139[R]. Reston:AIAA, 2007.
[10] VANSTONE L, SAMPER D E, HILLIER R. Shock-induced separation of transitional hypersonic boundary layers:AIAA-2015-2736[R]. Reston:AIAA, 2015.
[11] GIEPMAN R H M, SCHRIJER F F J, OUDHEUSDEN B W V. High-resolution PIV measurements of a transitional shock wave-boundary layer interaction[J]. Experiments in Fluids, 2015, 56(6):1-20.
[12] POLIVANOV P A, SIDORENKO A A, MASLOV A A. Transition effect on shock wave/boundary layer interaction at M=1.47:AIAA-2015-1974[R]. Reston:AIAA, 2015.
[13] PRIEBE S, MARTIN M P. Low frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699(5):1-49.
[14] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China:Physics, Mechanics & Astronomy, 2010, 53(9):1651-1658.
[15] GAO H, FU D X, MA Y W, et al. Direct numerical simulation of supersonic turbulent boundary layer flow[J]. Chinese Physics Letters, 2005, 22(7):1709-1712.
[16] LI X L, FU D X, MA Y W, et al, Acoustic calculation for supersonic turbulent boundary flow[J]. Chinese Physics Letters, 2009, 26(9):094701.
[17] RINGUETTE M J, BOOKEY P, WYCKHAM C, et al. Experimental study of a mach 3 compression ramp interaction at Reθ=2400[J]. AIAA Journal, 2009, 47(2):373-385.
[18] BOOKEY P, WYCKHAM C. SMITS A J, et al. New experimental data of STBLI at DNS/LES accessible Reynolds numbers:AIAA-2005-0309[R]. Reston:AIAA, 2005.
[19] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.
[20] MARTIN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1):270-289.
[21] PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3):530-545.
[22] PIROZZOLI S, BERNARDINI M. Direct numerical simulation database for impinging shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 2011, 49(6):1307-1312.
[23] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285(1):69-94.
[24] HEAD M R, BANDYOPADHYAY P R. New aspects of turbulent boundary layer structure[J]. Journal of Fluid Mechanics, 1981, 107:297-338.
[25] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):0802.
[26] LEE C B. Possible universal transitional scenario in a flat plate boundary layer:measurement and visualization[J]. Physical Review E, 2000, 62(3):297-338. |