[1] HARDWICKE C U, LAU Y C. Advances in thermal spray coatings for gas turbines and energy generation:A review[J]. Journal of Thermal Spray Technology, 2013, 22(5):564-576. [2] 唐健江, 于方丽, 张海鸿, 等. 润滑相尺寸对镍-石墨可磨耗封严涂层性能的影响[J]. 航空材料学报, 2019, 39(2):42-48. TANG J J, YU F L, ZHANG H H, et al. Effect of size of lubrication phase on properties of Ni-graphite abradable seal coating[J]. Journal of Aeronautical Materials, 2019, 39(2):42-48(in Chinese). [3] 张佳平, 高禩洋, 李浩宇, 等. 高速刮擦条件下两种铝基封严涂层的可刮削性[J]. 中国表面工程, 2018, 31(6):90-97. ZHANG J P, GAO S Y, LI H Y, et al. Investigation on abradability of two aluminum-based seal coatings under high-speed rubbing condition[J]. China Surface Engineering, 2018, 31(6):90-97(in Chinese). [4] MA Z Y, ZHANG W, LUO Z B, et al. Ultrasonic characterization of thermal barrier coatings porosity through BP neural network optimizing Gaussian process regression algorithm[J]. Ultrasonics, 2020, 100:105981. [5] DING S S, JIN S J, LUO Z B, et al. Researches on the ultrasonic scattering attenuation of carbon fibre reinforced plastics with 2D real morphology void model[J]. Acoustical Physics, 2017, 63(4):490-495. [6] 董金龙, 陈昊, 陈曦, 等. 面向映射单调性的TC4初生α相晶粒尺寸超声评价方法[J]. 航空学报, 2018, 39(12):422360. DONG J L, CHEN H, CHEN X, et al. An ultrasonic method of evaluation of TC4 primary α-phase grain size towards mapping monotonicity[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):422360(in Chinese). [7] 孙广开, 周正干. SiCp/Al复合材料增强体分布均匀性超声成像方法[J]. 北京航空航天大学学报, 2017, 43(3):417-423. SUN G K, ZHOU Z G. Ultrasonic imaging method fordistribution uniformity of reinforcement in SiCp/Al composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3):417-423(in Chinese). [8] ZHU L B, XIANG X C, DU Y, et al. Uniformity assessment of TRISO fuel particle distribution in spherical HTGR fuel element using voronoi tessellation and delaunay triangulation[J]. Science and Technology of Nuclear Installations, 2018, 2018:7274261. [9] SPOWART J E. Microstructural characterization and modeling of discontinuously-reinforced aluminum composites[J]. Materials Science and Engineering:A, 2006, 425(1-2):225-237. [10] WILKS G B, TSCHOPP M A, SPOWART J E. Multi-scale characterization of inhomogeneous morphologically textured microstructures[J]. Materials Science and Engineering:A, 2010, 527(4-5):883-889. [11] 李宗艺, 张伟, 林莉, 等. 基于面积分数多尺度分析的封严涂层孔隙分布均匀性定量表征[J]. 中国表面工程, 2020, 33(4):145-151. LI Z Y, ZHANG W, LIN L, et al. Quantitative characterization of pore distribution uniformity of seal coatings based on multi-scale analysis of area fraction[J]. China Surface Engineering, 2020, 33(4):145-151(in Chinese). [12] CAGGIANO A, ZHANG J J, ALFIERI V, et al. Machine learning-based image processing for on-line defect recognition in additive manufacturing[J]. CIRP Annals, 2019, 68(1):451-454. [13] 李萍, 宋波, 毛捷, 等. 深度学习在超声检测缺陷识别中的应用与发展[J]. 应用声学, 2019, 38(3):458-464. LI P, SONG B, MAO J, et al. Application and development of defect recognition using deep learning in ultrasonic testing[J]. Journal of Applied Acoustics, 2019, 38(3):458-464(in Chinese). [14] ZHANG M X, LI M C, ZHANG J R, et al. Onset detection of ultrasonic signals for the testing of concrete foundation piles by coupled continuous wavelet transform and machine learning algorithms[J]. Advanced Engineering Informatics, 2020, 43:101034. [15] 叶博嘉, 鲍序, 刘博, 等. 基于机器学习的航空器进近飞行时间预测[J]. 航空学报, 2020, 41(10):324136. YE B J, BAO X, LIU B, et al. Machine learning for aircraft approach time prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):324136(in Chinese). [16] 刘源, 庞宝君, 迟润强, 等. 基于声发射的铝蜂窝板超高速撞击损伤模式识别方法[J]. 航空学报, 2017, 38(5):220401. LIU Y, PANG B J, CHI R Q, et al. A damage pattern recognition method for hypervelocity impact on aluminum honeycomb core sandwich based on acoustic emission[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):220401(in Chinese). [17] 骆志高, 张保刚, 何鑫. 基于BP神经网络的金属拉深件裂纹在线监测[J]. 振动与冲击, 2012, 31(10):102-105. LUO Z G, ZHANG B G, HE X. On-line crack monitoring of metal deep drawing parts based on BP neural network[J]. Journal of Vibration and Shock, 2012, 31(10):102-105(in Chinese). [18] ZHANG R, WANG K, JIA R X, et al. Research on ultrasonic thermometry using maximum eigenvalue algorithm based on BP neural network[C]//2017 Chinese Automation Congress (CAC). Piscataway:IEEE Press, 2017:485-491. [19] LI K S, MA Z Y, FU P, et al. Quantitative evaluation of surface crack depth with a scanning laser source based on particle swarm optimization-neural network[J]. NDT & E International, 2018, 98:208-214. [20] ACCIANI G, BRUNETTI G, FORNARELLI G, et al. Angular and axial evaluation of superficial defects on non-accessible pipes by wavelet transform and neural network-based classification[J]. Ultrasonics, 2010, 50(1):13-25. [21] LIN L, ZHANG W, MA Z Y, et al. Porosity estimation of abradable seal coating with an optimized support vector regression model based on multi-scale ultrasonic attenuation coefficient[J]. NDT & E International, 2020, 113:102272. [22] 赵扬, 林莉, 马志远, 等. 基于随机介质理论的热障涂层随机孔隙模型构建[J]. 中国表面工程, 2010, 23(2):78-81. ZHAO Y, LIN L, MA Z Y, et al. Establishing TBC random pore model based on random media theory[J].China Surface Engineering, 2010, 23(2):78-81(in Chinese). [23] LI L, WEI Z, ZHIYUAN M, et al. Random multi-phase medium model and its application in analysis of ultrasonic propagation characteristics for AlSi-polyester abradable seal coating[J]. NDT & E International, 2019, 108:102173. [24] 饶颖, 符力耘, 吴玉, 等. 基于微结构-尺度双分解的页岩随机介质模拟和非均质特征分析[J]. 地球物理学报, 2020, 63(7):2800-2809. RAO Y, FU L Y, WU Y, et al. Heterogeneous characteristic analysis of shale based on multi-component and multi-scale random media method[J]. Chinese Journal of Geophysics, 2020, 63(7):2800-2809(in Chinese). |