[1] MCCANN D M, FORDE M C. Review of NDT methods in the assessment of concrete and masonry structures[J]. NDT & E International, 2001, 34(2):71-84. [2] Nayler J L. Dictionary of aeronautical engineering[M]. London:Newnes, 1959:25-29. [3] VAVILOV V P, DERUSOVA D, CHULKOV A, et al. Inspecting aviation composites at the stage of airplane manufacturing by applying ‘classical’ active thermal NDT, ultrasonic IR hermography and laser vibrometry[C]//Thermosense:Thermal Infrared Applications XL. Orlando, FL:SPIE, 2018:106-112. [4] KOMSKY I N, ACHENBACH J D, HAGEMAIER D, et al. A computerized self-compensating system for ultrasonic inspection of airplane structures[J]. NDT:A Partner in Engineering Innovation,1994, 27(3):77-85. [5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [6] REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once:unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:779-788. [7] DENG J H, LU Y, LEE V C S. Imaging-based crack detection on concrete surfaces using You Only Look Once network[J]. Structural Health Monitoring, 2021, 20(2):484-499. [8] DU Y C, PAN N, XU Z H, et al. Pavement distress detection and classification based on YOLO network[J]. International Journal of Pavement Engineering, 2021, 22(13):1659-1672. [9] WANG S Y, ZHANG P Z, ZHOU S Y, et al. A computer vision based machine learning approach for fatigue crack initiation sites recognition[J]. Computational Materials Science, 2020, 171:109259. [10] 杨晶晶, 李鸿宇, 王子睿, 等. 基于单步目标识别架构的轻量级裂纹图像自动识别算法[J]. 固体火箭技术, 2020, 43(5):648-653. YANG J J, LI H Y, WANG Z R, et al. Lightweight crack image automatic recognition algorithm based on single-stage object detecting[J]. Journal of Solid Rocket Technology, 2020, 43(5):648-653(in Chinese). [11] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596. [12] DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014:1090-1097. [13] LI Y, ZHU J K. A scale adaptive kernel correlation filter tracker with feature integration[C]//Computer Vision-ECCV 2014 Workshops.[S.l.]:Springer Cham, 2014:254-265. [14] TU Z W, CHEN X R, YUILLE A L, et al. Image parsing:unifying segmentation, detection, and recognition[J]. International Journal of Computer Vision, 2005, 63(2):113-140. [15] ZHANG Z P, PENG H W. Deeper and wider siamese networks for real-time visual tracking[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019:4586-4595. [16] 龚轩,乐孜纯,王慧, 等.多目标跟踪中的数据关联技术综述[J].计算机科学,2020,47(10):136-144. GONG X, LE Z C, WANG H, et al. Overview of data association techniques in multi-target tracking[J]. Computer Science, 2020, 47(10):136-144(in Chinese). [17] BOSE B, WANG X G, GRIMSON E. Multi-class object tracking algorithm that handles fragmentation and grouping[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2007:1-8. [18] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet:A unified embedding for face recognition and clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015:815-823. |