| [1] |
ASYRAF M R M, ILYAS R A, SAPUAN S M, et al. Advanced composite in aerospace applications: opportunities, challenges, and future perspective[M]∥Advanced Composites in Aerospace Engineering Applications. Cham: Springer International Publishing, 2022: 471-498.
|
| [2] |
王显峰, 阳铭广, 刘琛, 等. 变刚度复合材料层合板研究进展[J]. 南京航空航天大学学报, 2024, 56(1): 17-30.
|
|
WANG X F, YANG M G, LIU C, et al. Research progress of variable stiffness composite laminates[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2024, 56(1): 17-30 (in Chinese).
|
| [3] |
ALMEIDA J H S, BITTRICH L, SPICKENHEUER A. Improving the open-hole tension characteristics with variable-axial composite laminates: Optimization, progressive damage modeling and experimental observations[J]. Composites Science and Technology, 2020, 185: 107889.
|
| [4] |
朱伟东, 张笑, 齐德胜, 等. 变刚度复合材料开孔板拉伸行为数值模拟及试验验证[J]. 复合材料学报, 2018, 35(3): 599-606.
|
|
ZHU W D, ZHANG X, QI D S, et al. Numerical simulation and experiment validation of variable stiffness composite laminates with open holes under unidirectional tension[J]. Acta Materiae Compositae Sinica, 2018, 35(3): 599-606 (in Chinese).
|
| [5] |
MALAKHOV A V, POLILOV A N, ZHANG J K, et al. A modeling method of continuous fiber paths for additive manufacturing (3D printing) of variable stiffness composite structures[J]. Applied Composite Materials, 2020, 27(3): 185-208.
|
| [6] |
GÜRDAL Z, TATTING B F, WU C K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 911-922.
|
| [7] |
SUGIYAMA K, MATSUZAKI R, MALAKHOV A V, et al. 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber[J]. Composites Science and Technology, 2020, 186: 107905.
|
| [8] |
JOSHI S P, SUN C T. Impact induced fracture in a laminated composite[J]. Journal of Composite Materials, 1985, 19(1): 51-66.
|
| [9] |
ALBAZZAN M A, HARIK R, TATTING B F, et al. Efficient design optimization of nonconventional laminated composites using lamination parameters: A state of the art[J]. Composite Structures, 2019, 209: 362-374.
|
| [10] |
HAO P, YUAN X J, LIU C, et al. An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 205-238.
|
| [11] |
AMBATI M, GERASIMOV T, DE LORENZIS L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405.
|
| [12] |
WU J Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure[J]. Journal of the Mechanics and Physics of Solids, 2017, 103: 72-99.
|
| [13] |
ZHANG P, HU X F, BUI T Q, et al. Phase field modeling of fracture in fiber reinforced composite laminate[J]. International Journal of Mechanical Sciences, 2019, 161-162: 105008.
|
| [14] |
YU Y F, HOU C, ZHAO M Y. A unified anisotropic phase field model for progressive failure of fiber-reinforced composite materials[J]. Journal of the Mechanics and Physics of Solids, 2025, 197: 106063.
|
| [15] |
BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797-826.
|
| [16] |
FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342.
|
| [17] |
GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 1921, 221(582-593): 163-198.
|
| [18] |
AMOR H, MARIGO J J, MAURINI C. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1209-1229.
|
| [19] |
MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45-48): 2765-2778.
|
| [20] |
CHENG Z Q, LIU H, TAN W. Advanced computational modelling of composite materials[J]. Engineering Fracture Mechanics, 2024, 305: 110120.
|
| [21] |
MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311.
|
| [22] |
KUMAR A, SAIN T. Phase field-based cohesive zone approach to model delamination in fiber-reinforced polymer composites[J]. Composite Structures, 2024, 329: 117751.
|
| [23] |
ALESSI R, VIDOLI S, DE LORENZIS L. A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case[J]. Engineering Fracture Mechanics, 2018, 190: 53-73.
|
| [24] |
CARRARA P, AMBATI M, ALESSI R, et al. A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112731.
|
| [25] |
TANG W, YI M, CHEN L Q, et al. Classical fatigue theory informed phase-field model for high-cycle fatigue life and fatigue crack growth[J]. Engineering Fracture Mechanics, 2024, 306: 110212.
|
| [26] |
MEHRMASHHADI J, BAHADORI M, BOBARU F. On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass[J]. Engineering Fracture Mechanics, 2020, 240: 107355.
|
| [27] |
MARTÍNEZ-PAÑEDA E, GOLAHMAR A, NIORDSON C F. A phase field formulation for hydrogen assisted cracking[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 342: 742-761.
|
| [28] |
HUBER W, ASLE ZAEEM M. Length scale insensitive phase-field fracture methodology for brittle and ductile materials[J]. Theoretical and Applied Fracture Mechanics, 2024, 133: 104500.
|
| [29] |
BLEYER J, ALESSI R. Phase-field modeling of anisotropic brittle fracture including several damage mechanisms[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 336: 213-236.
|
| [30] |
HIRSHIKESH, NATARAJAN S, ANNABATTULA R K. Modeling crack propagation in variable stiffness composite laminates using the phase field method[J]. Composite Structures, 2019, 209: 424-433.
|
| [31] |
CLAYTON J D, KNAP J. Phase field modeling of directional fracture in anisotropic polycrystals[J]. Computational Materials Science, 2015, 98: 158-169.
|
| [32] |
NGUYEN T T, RÉTHORÉ J, BAIETTO M C. Phase field modelling of anisotropic crack propagation[J]. European Journal of Mechanics-A/Solids, 2017, 65: 279-288.
|
| [33] |
ZHANG P, YAO W A, HU X F, et al. An explicit phase field model for progressive tensile failure of composites[J]. Engineering Fracture Mechanics, 2021, 241: 107371.
|
| [34] |
PAN Z Z, ZHANG L W, LIEW K M. A phase-field framework for failure modeling of variable stiffness composite laminae[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114192.
|
| [35] |
叶辉, 李清原, 闫康康. 变刚度复合材料层合板的力学性能[J]. 吉林大学学报(工学版), 2020, 50(3): 920-928.
|
|
YE H, LI Q Y, YAN K K. Mechanical properties of variable-stiffness carbon fiber composite laminates[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 920-928 (in Chinese).
|
| [36] |
李阳, 牛雪娟, 潘文峰. 含中心孔复合材料变刚度板孔边应力解析法分析[J]. 固体火箭技术, 2018, 41(1): 84-88, 129.
|
|
LI Y, NIU X J, PAN W F. Analytical approach of hole-edge stress for composite variable stiffness plate with a center hole[J]. Journal of Solid Rocket Technology, 2018, 41(1): 84-88, 129 (in Chinese).
|
| [37] |
PARNAS L, ORAL S, CEYHAN Ü. Optimum design of composite structures with curved fiber courses[J]. Composites Science and Technology, 2003, 63(7): 1071-1082.
|
| [38] |
PHAM K, AMOR H, MARIGO J J, et al. Gradient damage models and their use to approximate brittle fracture[J]. International Journal of Damage Mechanics, 2011, 20(4): 618-652.
|
| [39] |
吴建营. 固体结构损伤破坏统一相场理论、算法和应用[J]. 力学学报, 2021, 53(2): 301-329.
|
|
WU J Y. On the unified phase-field theory for damage and failure in solids and structures: Theoretical and numerical aspects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301-329 (in Chinese).
|
| [40] |
RIDHA M, WANG C H, CHEN B Y, et al. Modelling complex progressive failure in notched composite laminates with varying sizes and stacking sequences[J]. Composites Part A: Applied Science and Manufacturing, 2014, 58: 16-23.
|
| [41] |
ZHANG P, HU X F, WANG X Y, et al. An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus[J]. Engineering Fracture Mechanics, 2018, 204: 268-287.
|
| [42] |
MOLNÁR G, GRAVOUIL A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[J]. Finite Elements in Analysis and Design, 2017, 130: 27-38.
|
| [43] |
CAHILL L M A, NATARAJAN S, BORDAS S P A, et al. An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae[J]. Composite Structures, 2014, 107: 119-130.
|