1 |
崔乃刚, 吴荣, 韦常柱, 等. 火箭垂直返回双幂次固定时间收敛滑模控制方法[J]. 哈尔滨工业大学学报, 2020, 52(4): 15-24.
|
|
CUI N G, WU R, WEI C Z, et al. Double-order power fixed-time convergence sliding mode control method for launch vehicle vertical returning[J]. Journal of Harbin Institute of Technology, 2020, 52(4): 15-24 (in Chinese).
|
2 |
崔乃刚, 吴荣, 韦常柱, 等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018, 2(2): 27-42.
|
|
CUI N G, WU R, WEI C Z, et al. Development and key technologies of vertical takeoff vertical landing reusable launch vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(2): 27-42 (in Chinese).
|
3 |
徐大富, 张哲, 吴克, 等. 垂直起降重复使用运载火箭发展趋势与关键技术研究进展[J]. 科学通报, 2016, 61(32): 3453-3463.
|
|
XU D F, ZHANG Z, WU K, et al. Recent progress on development trend and key technologies of vertical take-off vertical landing reusable launch vehicle[J]. Chinese Science Bulletin, 2016, 61(32): 3453-3463 (in Chinese).
|
4 |
BOSKOVIC J D, JACKSON J A, MEHRA R K, et al. Adaptive fault tolerant control design for a model of DC-X dynamics[C]∥ 2008 American Control Conference. Piscataway: IEEE Press, 2008: 1046-1051.
|
5 |
张亮, 黄盘兴, 徐大富, 等. 垂直起降火箭垂直返回段自适应容错控制算法[J]. 战术导弹技术, 2015(2): 63-69.
|
|
ZHANG L, HUANG P X, XU D F, et al. VTVL rocket fault-tolerant control for its return trajectory[J]. Tactical Missile Technology, 2015(2): 63-69 (in Chinese).
|
6 |
WANG F, HUA C C, ZONG Q. Attitude control of reusable launch vehicle in reentry phase with input constraint via robust adaptive backstepping control[J]. International Journal of Adaptive Control and Signal Processing, 2015, 29(10): 1308-1327.
|
7 |
崔乃刚, 张亮, 韦常柱, 等. 可重复使用运载器大姿态机动自抗扰控制[J]. 中国惯性技术学报, 2017, 25(3): 387-394.
|
|
CUI N G, ZHANG L, WEI C Z, et al. Active disturbance rejection control for reusable launch vehicle with large attitude maneuver[J]. Journal of Chinese Inertial Technology, 2017, 25(3): 387-394 (in Chinese).
|
8 |
陈佳晔, 王紫扬, 陈益, 等. 基于迭代学习干扰观测器的RLV容错控制方法[J]. 中国惯性技术学报, 2021, 29(6): 832-840.
|
|
CHEN J Y, WANG Z Y, CHEN Y, et al. RLV fault-tolerant control method based on iterative learning disturbance observer[J]. Journal of Chinese Inertial Technology, 2021, 29(6): 832-840 (in Chinese).
|
9 |
刘航. 运载火箭第一级回收控制研究[D]. 西安: 西安电子科技大学, 2020.
|
|
LIU H. Research on the first stage recovery control of launch vehicle[D]. Xi’an: Xidian University, 2020 (in Chinese).
|
10 |
VIGNESH S A, APM I H, VP A K, et al. Trajectory planning and soft landing of RLV using non-linear model predictive control[C]∥ 2021 Seventh Indian Control Conference. Piscataway: IEEE Press, 2021: 87-92.
|
11 |
XING G Q, PARVEZ S A. Nonlinear attitude state tracking control for spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(3): 624-626.
|
12 |
PEI J, PUETZ A, DUARTE C, et al. Suppression of nonlinear rotary slosh dynamics using the SLS adaptive augmenting control system demonstration on a quadcopter testbed: AIAA-2019-0114[R]. Reston: AIAA, 2019.
|
13 |
SHTESSEL Y B, HALL C E, BAEV S, et al. Flexible modes control using sliding mode observers: Application to Ares I: AIAA-2010-7565[R]. Reston: AIAA, 2010.
|
14 |
钱默抒, 熊克, 王海洋. 重复使用运载火箭精确回收滑模动态面控制[J]. 宇航学报, 2018, 39(8): 879-888.
|
|
QIAN M S, XIONG K, WANG H Y. Sliding mode dynamic surface control in precise recovery phase for reusable launch vehicle[J]. Journal of Astronautics, 2018, 39(8): 879-888 (in Chinese).
|
15 |
李晓栋, 廖宇新, 廖俊, 等. 可重复使用运载火箭一子级垂直回收有限时间滑模控制[J]. 中南大学学报(自然科学版), 2020, 51(4): 979-988.
|
|
LI X D, LIAO Y X, LIAO J, et al. Finite-time sliding mode control for vertical recovery of the first-stage of reusable rocket[J]. Journal of Central South University (Science and Technology), 2020, 51(4): 979-988 (in Chinese).
|
16 |
李晓栋, 廖宇新, 李珺. 基于MFTESO的可重复使用运载火箭多变量有限时间控制方法[J]. 控制与信息技术, 2019(4): 12-17.
|
|
LI X D, LIAO Y X, LI J. MFTESO based multivariable finite-time control for reusable rocket[J]. Control and Information Technology, 2019(4): 12-17 (in Chinese).
|
17 |
杨少波. 垂直起降火箭末段定点着陆的制导控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
YANG S B. Research on guidance and control method of fixed point landing of vertical takeoff vertical landing rocket in the last stage[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
|
18 |
JU X Z, WEI C Z, ZHANG L, et al. Semi-globally smooth control for VTVL reusable launch vehicle under actuator faults and attitude constraints[J]. Acta Astronautica, 2022, 191: 528-546.
|
19 |
ZHANG L, WEI C Z, WU R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82/83: 70-79.
|
20 |
ZHANG L, WEI C Z, WU R, et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle[J]. Acta Astronautica, 2019, 159: 362-370.
|
21 |
JU X Z, WEI C Z, XU H C, et al. Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints[J]. ISA Transactions, 2022, 129: 55-72.
|
22 |
ZHANG L, JING L, YE L H, et al. Predefined-time control for a horizontal takeoff and horizontal landing reusable launch vehicle[J]. Aircraft Engineering and Aerospace Technology, 2021, 93(6): 957-970.
|
23 |
宋征宇, 蔡巧言, 韩鹏鑫, 等. 重复使用运载器制导与控制技术综述[J]. 航空学报, 2021, 42(11): 525050.
|
|
SONG Z Y, CAI Q Y, HAN P X, et al. Review of guidance and control technologies for reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525050 (in Chinese).
|
24 |
韦常柱, 琚啸哲, 徐大富, 等. 垂直起降重复使用运载器返回制导与控制[J]. 航空学报, 2019, 40(7): 322782.
|
|
WEI C Z, JU X Z, XU D F, et al. Guidance and control for return process of vertical takeoff vertical landing reusable launching vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322782 (in Chinese).
|
25 |
WU R, WEI C Z, YANG F, et al. FxTDO-based non-singular terminal sliding mode control for second-order uncertain systems[J]. IET Control Theory & Applications, 2018, 12(18): 2459-2467.
|
26 |
ZHANG L, JU X Z, CUI N G. Ascent control of heavy-lift launch vehicle with guaranteed predefined performance[J]. Aerospace Science and Technology, 2021, 110: 106511.
|
27 |
SÁNCHEZ-TORRES J D, DEFOORT M, MUÑOZ-VÁZQUEZ A J. Predefined-time stabilisation of a class of nonholonomic systems[J]. International Journal of Control, 2020, 93(12): 2941-2948.
|
28 |
JIMÉNEZ-RODRÍGUEZ E, MUÑOZ-VÁZQUEZ A J, SÁNCHEZ-TORRES J D, et al. A Lyapunov-like characterization of predefined-time stability[J]. IEEE Transactions on Automatic Control, 2020, 65(11): 4922-4927.
|
29 |
MUÑOZ-VÁZQUEZ A J, SÁNCHEZ-TORRES J D, JIMÉNEZ-RODRÍGUEZ E, et al. Predefined-time robust stabilization of robotic manipulators[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1033-1040.
|
30 |
ZHANG C, MA G F, SUN Y C, et al. Observer-based prescribed performance attitude control for flexible spacecraft with actuator saturation[J]. ISA Transactions, 2019, 89: 84-95.
|
31 |
XU B J, JI S, ZHANG C R, et al. Linear-extended-state-observer-based prescribed performance control for trajectory tracking of a robotic manipulator[J]. Industrial Robot, 2021, 48(4): 544-555.
|
32 |
ZHANG L, WU R, WEI C Z, et al. Quaternion-based reusable launch vehicle composite attitude control via active disturbance rejection control and sliding mode approach: AIAA-2017-2320[R]. Reston: AIAA, 2017.
|
33 |
李杨, 刘昶, 王吉飞, 等. 垂直起降运载火箭总体方案研究[J]. 南京航空航天大学学报, 2019, 51(S1): 1-6.
|
|
LI Y, LIU C, WANG J F, et al. General design study of vertical takeoff and landing launch vehicle[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(S1): 1-6 (in Chinese).
|